imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

AN30183A

600mA Synchronous DC-DC Step Down Regulator (1ch) 300mA LDO Regulator (4ch) Multi Power Supply (High Efficiency Power LSI)

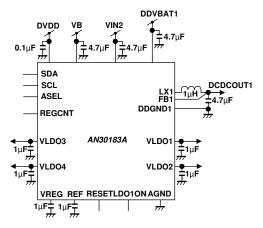
FEATURES

- High-Speed Response DC-DC Step Down Regulator Circuit that employs Hysteretic System
- DC-DC Step Down Regulator : 1-ch Input voltage Range VBAT :2.5V to 5.5V DVDD : 1.7V to 3.0V Output voltage Range 0.8 V to 2.4 V Up to 600 mA Output Current
- LDO Regulator : 4-ch Input voltage Range VBAT :2.5V to 5.5V DVDD : 1.7V to 3.0V Output voltage Range 1.0 V to 3.3 V Up to 300 mA Output Current
- I²C control (2-slave address selectable)
- 20 pin Wafer Level Chip Size Package (WLCSP) (Size : 1.56 mm × 2.06 mm, 0.4 mm Pitch)

DESCRIPTION

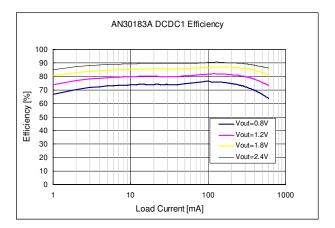
AN30183A is a multi power supply LSI which has High-Speed Response DC-DC Step Down Regulators (1-ch) and LDO Regulators (4-ch).

By this DC-DC system, when load current charges suddenly, it responds at high speed and minimizes the changes of output voltage.


Since it is possible to use capacitors with small capacitance and it is unnecessary to add external parts for system phase compensation, this IC realizes downsizing of set and reducing in the number of external parts.

The output DC of each power supply is variable by I²C control.

APPLICATIONS


Mobile phone, Portable appliance, etc

SIMPLIFIED APPLICATION

Notes) This application circuit is an example. The operation of mass production set is not guaranteed. You should perform enough evaluation and verification on the design of mass production set. You are fully responsible for the incorporation of the above application circuit and information in the design of your equipment.

EFFICIENCY CURVE

Condition) DDVBAT1 = DDVBAT2 = VB = VIN2 = 3.7V

Lo = 1.0 μ H, Cout = 4.7 μ F

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Rating	Unit	Notes
Supply voltage	VB,VIN2,DDVBAT1	6.0	V	*1
Supply voltage	DVDD	3.6	V	*1
Output Current	I _{IN}	—	А	*1
Operating free-air temperature	T _{opr}	- 30 to + 85	°C	*2
Operating junction temperature	Tj	– 30 to + 150	°C	*2
Storage temperature	T _{stg}	– 55 to + 150	°C	*2
Input Voltago Pongo	RESET,LDO1ON,FB1, REGCNT	-0.3 to V_{VBAT} + 0.3	V	*1 *3
Input Voltage Range	SCL,SDA,ASEL	- 0.3 to DVDD + 0.3	V	*1 *3
Output Voltage Range	LX1,VREG,REF,SDA LDO1,LDO2,LDO3,LDO4	- 0.3 to V _{VBAT} + 0.3	V	*1 *3
ESD	HBM (Human Body Model)	2	kV	_

Notes) Do not apply external currents and voltages to any pin not specifically mentioned.

This product may sustain permanent damage if subjected to conditions higher than the above stated absolute maximum rating. This rating is the maximum rating and device operating at this range is not guaranteeable as it is higher than our stated recommended operating range. When subjected under the absolute maximum rating for a long time, the reliability of the product may be affected.

*1: The values under the condition not exceeding the above absolute maximum ratings and the power dissipation.

*2:Except for the power dissipation, operating ambient temperature, and storage temperature, all ratings are for Ta = 25 °C. *3: V_{VBAT} is voltage for DDVBAT1 = VB = VIN2, (V_{VBA} + 0.3) V must not be exceeded 6 V.

 V_{DVDD} is voltage for DVDD, (V_{\text{DVDD}} + 0.3) V must not be exceeded 3.6 V.

POWER DISSIPATION RATING

PACKAGE	θ_{JA}	PD (Ta = 25 °C)	PD (Ta = 85 °C)	Notes
20 pin Wafer level chip size Package (WLCSP Type)	359.0 °C / W	0.348 W	0.181 W	*1

Note). For the actual usage, please refer to the PD-Ta characteristics diagram in the package specification, follow the power supply voltage, load and ambient temperature conditions to ensure that there is enough margin and the thermal design does not exceed the allowable value.

*1:Glass Epoxy Substrate (4 Layers) [Glass-Epoxy: 50 X 50 X 0.8 t (mm)] Die Pad Exposed , Soldered.

CAUTION

Although this has limited built-in ESD protection circuit, but permanent damage may occur on it. Therefore, proper ESD precautions are recommended to avoid electrostatic damage to the MOS gates

AN30183A

RECOMMENDED OPERATING CONDITIONS

Parameter	Pin Name	Min.	Тур.	Max.	Unit	Notes
	VB	2.5	3.7	5.5	V	*1
Supply voltage renge	VIN2	2.5	3.7	5.5	V	*1
Supply voltage range	DDVBAT1	2.5	3.7	5.5	V	*1
	DVDD	1.7	1.85	3.0	V	*1
	RESET	- 0.3	_	V _{VBAT} + 0.3	V	*2
	LDO10N	- 0.3	_	V _{VBAT} + 0.3	V	*2
	REGCNT	- 0.3	_	V _{VBAT} + 0.3	V	*2
Input Voltage Range	FB1	- 0.3	_	V _{VBAT} + 0.3	V	*2
	SCL	- 0.3	_	DVDD + 0.3	V	*2
	SDA	- 0.3	_	DVDD + 0.3	V	*2
	ASEL	- 0.3	_	DVDD + 0.3	V	*2
	LX1	- 0.3	_	V _{VBAT} + 0.3	V	*2
	VREG	- 0.3	_	V _{VBAT} + 0.3	V	*2
	REF	- 0.3	_	V _{VBAT} + 0.3	V	*2
	SDA	- 0.3	_	DVDD + 0.3	V	*2
Output Voltage Rang	VLDO1	- 0.3	_	V _{VBAT} + 0.3	V	*2
	VLDO2	- 0.3	_	V _{VBAT} + 0.3	V	*2
	VLDO3	- 0.3	_	V _{VBAT} + 0.3	V	*2
	VLDO4	- 0.3	_	V _{VBAT} + 0.3	V	*2

Note) Do not apply external currents and voltages to any pin not specifically mentioned.

Voltage values, unless otherwise specified, are with respect to GND. GND is voltage for AGND = DDGND1

 V_{VBAT} is voltage for DDVBAT1 = VB = VIN2.

*1 : The values under the condition not exceeding the above absolute maximum ratings and the power dissipation.

*2 : (V_{VBAT} + 0.3) V must not be exceeded 6 V. (DVDD + 0.3) V must not be exceeded 3.6 V.

ELECRTRICAL CHARACTERISTICS

 $V_{VBAT}(DDVBAT1 = VB = VIN2) = 3.7V, DVDD = 1.85V$ DC-DC : Co = 4.7 μ F, Lo = 1 μ H / LDO : Co =1.0 μ F

 T_a = 25 °C \pm 2 °C unless otherwise noted.

	Parameter		Symbol Conditions		Limits		Unit	Notes
					Тур	Max	Unit	Notes
Co	Consumption current							
	Consumption current 1 on active	IBAT_1	only LDO1 (PS mode) ON	—	10	20	μA	_
	Consumption current 2 on active	IBAT_2	DCDC1, LDO1-4 = ON	_	240	400	μA	—
	Static consumption current	IBAT_3	DCDC1, LDO1-4 = OFF RESET = "L"		0.1	1.0	μA	_

ELECRTRICAL CHARACTERISTICS (Continued)

$$\label{eq:Vbat} \begin{split} V_{VBAT}(DDVBAT1 = VB = VIN2) &= 3.7V, \ DVDD = 1.85V \\ DC\text{-}DC : Co &= 4.7 \ \mu\text{F}, \ Lo &= 1 \ \mu\text{H} \ / \ LDO : Co &= 1.0 \ \mu\text{F} \\ T_a &= 25 \ ^\circ\text{C} \pm 2 \ ^\circ\text{C} \ unless \ otherwise \ noted. \end{split}$$

Limits Conditions Parameter Symbol Unit Notes Тур Max Min LDO1 – 4 (Normal Mode) - (LDO Regulator) ILDO = -150 mAOutput voltage VLDO 1.803 1.850 1.897 ٧ Vout = 1.85 V setting ILDO Output current 300 mΑ ____ _ ____ ____ DVLDO mV Δ ILDO = - 10 μ A \rightarrow - 150 mA -5 20 50 Load regulation ___ $VB = 3.1~V \rightarrow 4.5~V$ **VLDOLR** - 10 Line regulation ILDO = - 150 mA 0 10 mV ____ Vout = 1.85 V setting VB = 3.7 VShort-circuit current ISTLDO 35 100 255 mΑ _ VLDO = 0 VLDO1 - 4 (Power Save Mode) - (LDO Regulator) ILDO = -5 mAOutput voltage **VLDOPS** 1.803 1.850 1.897 V Vout = 1.85 V setting **ILDOPS** Output current 10 mΑ ____ _ ____ _ **DVLDOPS** Δ ILDO = - 10 μ A \rightarrow - 5 mA - 5 20 50 Load regulation mV ____ $VB = 3.1 V \rightarrow 4.5 V$ Line regulation **VLDOLRPS** ILDO = -5 mA0 25 mV - 25 ____ Vout = 1.85 V setting

ELECRTRICAL CHARACTERISTICS (Continued)

 $\label{eq:Vbat} \begin{array}{l} V_{VBAT}(DDVBAT1=VB=VIN2)=3.7V,\ DVDD=1.85V\\ DC\text{-}DC:\ Co=4.7\ \mu\text{F},\ Lo=1\ \mu\text{H}\ /\ LDO:\ Co=1.0\ \mu\text{F}\\ T_a=25\ ^\circ\text{C}\pm2\ ^\circ\text{C}\ unless\ otherwise\ noted. \end{array}$

Limits Conditions Parameter Symbol Unit Notes Тур Max Min DCDC1 (DC-DC Step Down Regulator) IDCDC1 = -300 mAVDCDC1 Output voltage 1.170 1.200 1.230 V Vout = 1.2 V setting Output current IDCDC1 _ 600 mΑ _ ____ ____ Δ IDCDC1 = - 10 μ A \rightarrow - 500 mA Load regulation DVDCDC1 25 45 mV Vout = 1.2 V setting $\mathsf{DDVBAT1} = 3.1 \ \mathsf{V} \to 4.5 \ \mathsf{V}$ Line regulation VDCDC1LR IDCDC1 = - 300 mA 4 13 m٧ ____ Vout = 1.2 V setting Oscillation frequency ISTDCDC1 IDCDC1 = -300 mA (CCM)2 3 4 MHz I/O characteristics of control terminal (RESET, LDO1ON, REGCNT) ٧ Low input voltage VIL1 Voltage recognized as low level ____ _ 0.45 Voltage recognized as high level VIH1 ٧ High input voltage 1.2 Input pull-down resistance PDR1 1 3 6 MΩ _____ _ I/O characteristics of control terminal (ASEL) VDVDD VIL2 Voltage recognized as low level Low input voltage ٧ imes 0.3 V_{DVDD} VIH2 High input voltage Voltage recognized as high level V ____ imes 0.7

AN30183A

APPLICATION INFORMATION

REFERENCE VALUES FOR DESIGN

$V_{VBAT}(DDVBAT1 = VB = VIN2) = 3.7V, DVDD = 1.85V$

 $T_a = 25 \ ^\circ C \pm 2 \ ^\circ C$ unless otherwise noted.

	Parameter	Cumbol	Conditions	Refe	erence va	alues	Unit	Notes
	i aranielei		Symbol Conditions		Тур	Max	Unit	notes
I ² C	Bus (Internal I/O Stage Characteristic	cs)				_	_	
	Low-level input voltage	VIL1	Voltage which recognized that SDA and SCL are Low-level	- 0.5	_	$0.3 imes V_{DVDD}$	V	*1 *2
	High-level input voltage	VIH1	Voltage which recognized that SDA and SCL are High-level	$0.7 imes V_{ m DVDD}$	_	V _{DVDD} max + 0.5	v	*1 *2
	Low-level output voltage 1	VOL1	V _{DVDD} > 2 V SDA(sink current) = 3 mA	0	_	0.4	V	*2
	Low-level output voltage 2	VOL2	V _{DVDD} < 2 V SDA(sink current) = 3 mA	0	_	$0.2 \times V_{DVDD}$	V	*2
	Input current each I/O pin	IL	SCL, SDA = $0.1 \times V_{DVDDmax}$ to $0.9 \times V_{DVDDmax}$	- 10		10	μΑ	*2
	SCL clock frequency	FOSC	_	0		400	kHz	*2

Notes) *1 : The input threshold voltage of I²C bus (Vth) is linked to $V_{\mbox{\tiny DVDD.}}$

In case the pull-up voltage is not V_{DVDD} , the threshold voltage (Vth) is fixed to ((V_{DVDD} / 2) ± (Schmitt width) / 2) and High-level, Low-level of input voltage are not specified.

In this case, pay attention to Low-level (max.) value (V $_{\rm ILmax}).$

It is recommended that the pull-up voltage of $I^{2}C$ bus is set to the $I^{2}C$ bus I/O stage supply voltage (V_{DVDD}).

APPLICATION INFORMATION (Continued)

REFERENCE VALUES FOR DESIGN

 $V_{VBAT}(DDVBAT1$ = VB = VIN2) = 3.1V to 4.5V, V_{DVDD} = 1.85V , DC-DC : Co = 4.7 μ F, Lo = 1 μ H / LDO : Co =1.0 μ F T_a = 25 °C ± 2 °C unless otherwise noted.

	Deremeter	Symbol	Conditions	Refe	erence va	lues	Unit	Natas
	Parameter	Symbol	Conditions	Min	Тур	Max	Unit	Notes
LD	O1 – 4 (Normal Mode) - (LDO Re	egulator)	-					
	Output voltage	VLDO	ILDO = - 150 mA Vout = 1.85 V setting		1.850	1.897	v	*2
	Consumption current on active	IREGLDO	Normal mode VB > Vout + 0.1 V or VIN2 > Vout + 0.1 V	25	50	75	μA	*2
	I/O voltage difference	VSATLDO	ILDO = - 300 mA	0.3	_	_	V	*2
	Ripple rejection	VLDORR	$\label{eq:states} \begin{array}{l} \Delta VB = 3.7 \ V \pm 0.15 \ V \\ ILDO = - \ 150 \ mA \\ fvin = 100 \ Hz \ to \ 10 \ kHz \end{array}$	_	- 60	- 40	dB	*2
	Discharge resistance	RDISLDO	_	50	100	200	kΩ	*2
	Load change characteristic	LTRLDO	$ILDO = -10 \ \mu A \leftrightarrow -100 \ mA$	—	30	150	mV	*2
LD	O1 – 4 (Power Save Mode) - (LD	O Regulator)						
	Output voltage	VLDOPS	ILDO = - 5 mA Vout = 1.85 V setting	1.803	1.850	1.897	V	*2
	Consumption current on active	IREGLDOPS	Power Save mode VB > Vout + 0.1 V or VIN2 > Vout + 0.1 V	1	3	5	μA	*2
	Ripple rejection VLD		Δ VB = 3.7 V ± 0.15 V ILDO = - 5 mA fvin = 100 Hz to 10 kHz	_	- 10	- 5	dB	*2
	Short-circuit current	ISTLDOPS	VB = 3.7 V VLDO = 0 V	5	20	40	mA	*2

APPLICATION INFORMATION (Continued)

REFERENCE VALUES FOR DESIGN

 $V_{VBAT}(DDVBAT1$ = VB = VIN2) = 3.1V to 4.5V, DVDD = 1.85V , DC-DC : Co = 4.7 μ F, Lo = 1 μ H / LDO : Co =1.0 μ F T_a = 25 °C \pm 2 °C unless otherwise noted.

	Devemeter	Cumbol	Conditions	Refe	erence va	alues	Unit	Notes
	Parameter	Symbol	Conditions	Min	Тур	Max	Unit	notes
DC	DC1 (DC-DC Step Down Regulat	or)				_	_	
	Output Voltage	VDCDC1	IDCDC1 = - 300 mA Vout = 1.2 V setting	1.170	1.200	1.230	v	*2
	Consumption current on active	IREGDCCD1	IDCDC1 = 0 mA	10	25	40	μA	*2
	Output over current limit	ILIMDCDC1	From FB1 × 100% to FB1 × 70% VB = 3.7 V	_	1.0	1.2	A	*2
	Efficiency 1	EFFDCDC11	DDVBAT1 = 3.4 V VDCDC1 = 2.4 V IDCDC1 = - 150 mA	85	90	_	%	*2
	Efficiency 2	EFFDCDC12	DDVBAT1 = 3.7 V VDCDC1 = 1.2 V IDCDC1 = - 150 mA	75	80	_	%	*2
	LX leak current	ILXL1	DDVBAT1 = 5.5 V DCDC1 = Disable VLX1 = 0 V or 5.5 V	- 1	0	1	μA	*2
	Discharge resistance	RDISDCDC1		0.5	1.0	2.0	kΩ	*2

APPLICATION INFORMATION (Continued)

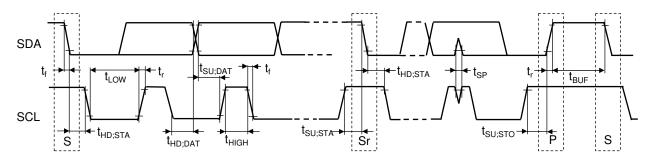
REFERENCE VALUES FOR DESIGN

 $V_{VBAT}(DDVBAT1$ = VB = VIN2) = 3.1V to 4.5V, DVDD = 1.85V , DC-DC : Co = 4.7 μ F, Lo = 1 μ H / LDO : Co =1.0 μ F T_a = 25 °C \pm 2 °C unless otherwise noted.

Devenedar	Currente	Conditions	Refe	erence va	alues	Linit	Num
Parameter	Symbo	I Conditions	Min	Тур	Max	- Unit	Notes
I ² C bus (Internal I/O stage chara	cteristics)						
Hysteresis of Schmitt trigge input 1	Vhys1	V_{IO} > 2 V, Hysteresis 1 of SDA, SCL	$\begin{array}{c} 0.05 \times \\ V_{\text{DVDD}} \end{array}$	—	_	V	*2
Hysteresis of Schmitt trigge input 2	r Vhys2	V _{IO} < 2 V, Hysteresis 2 of SDA, SCL	$0.1 \times V_{DVDD}$	_	_	V	*2
Output fall time from V _{IHmin} t	o V _{ILmax} Tof	$\begin{array}{l} Bus \ capacitance: 10 \ pF \ to \\ 400 \ pF \\ I_P \leq 6 \ mA \ (V_{OLmax} = 0.6 \ V) \\ I_P: Max. \ sink \ current \end{array}$	$20 + 0.1 \times C_b$	_	250	ns	*2
Pulse width of spikes which be suppressed by the input		_	0	_	50	ns	*2
Capacitance for each I/O pi	n Ci	—	—	—	10	pF	*2
I ² C bus (Bus line specifications)							
Hold time (repeated) START condition	t _{HD:STA}	The first clock pulse is generated after t _{HD:STA} .	0.6	_	_	μs	*2
Low period of the SCL clock	t _{LOW}	—	1.3	_	_	μs	*2
High period of the SCL cloc	k t _{HIGH}	_	0.6	_	_	μs	*2
Set-up time for a repeat ST condition	ART t _{su:sta}	_	0.6		_	μs	*2
Data hold time	t _{HD:DAT}	_	0		0.9	μs	*2
Data set-up time	t _{SU:DAT}	_	100	_	—	ns	*2
Rise time of both SDA and SCL signals	t _r	_	$20 + 0.1 \times C_b$	—	300	ns	*2
Fall time of both SDA and SCL signals	t _f	_	$\begin{array}{c} 20 \ + \\ 0.1 \times C_b \end{array}$	_	300	ns	*2
Set-up time of STOP condit	on t _{su:stc}	—	0.6		_	μs	*2
Bus free time between STO and START condition	P t _{BUF}	_	1.3	—	_	μs	*2

APPLICATION INFORMATION (Continued)

REFERENCE VALUES FOR DESIGN


 $V_{VBAT}(DDVBAT1$ = VB = VIN2) = 3.1V to 4.5V, DVDD = 1.85V , DC-DC : Co = 4.7 μ F, Lo = 1 μ H / LDO : Co =1.0 μ F T_a = 25 °C \pm 2 °C unless otherwise noted.

	Decemeter	Sumbol	Conditions	Refe	erence va	alues	Unit	Notes
	Parameter	Symbol Conditions		Min	Тур	Max	Unit	Notes
I ² C	bus (Bus line specifications) (continu	ed)						
	Capacitive load for each bus line	C _b	_		_	400	pF	*2 *3
	Noise margin at the Low-level for each connected device	V _{nL}	—	$0.1 \times V_{DVDD}$	_		V	*2 *3
	Noise margin at the High-level for each connected device	V _{nH}	_	$0.2 \times V_{DVDD}$	_	_	v	*2 *3
Co	nsumption current							
	Static consumption current 2	IBAT_4	DDVBAT1 = VB = VIN2 = 3.7 V DCDC1, LDO1 to 4 = OFF RESET= "H"		8	17	μA	*2

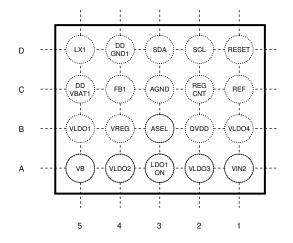
Notes) *2 :Checked by design, not production tested.

*3 :The timing of Fast-mode devices in I²C-bus is specified as the following.

All values referred to V_{IHmin} and V_{ILmax} level.

S: START condition

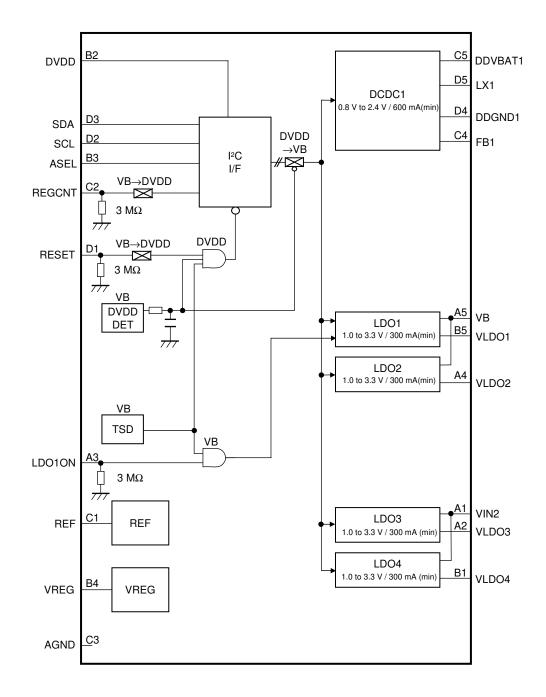
Sr : Repeat START condition


P: STOP condition

AN30183A

PIN CONFIGURATION

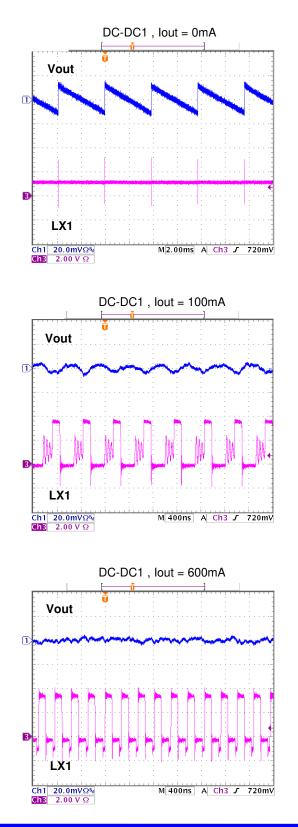
TOP VIEW


PIN FUNCTIONS

Pin No.	Pin name	Туре	Description
A1	VIN2	Power Supply	Input for LDO3 and LDO4
A2	VLDO3	Output	LDO3 output
A3	LDO1ON	Input	LDO1 ON/OFF control
A4	VLDO2	Output	LDO2 output
A5	VB	Power Supply	Input for LDO1, LDO2 and other VB
B1	VLDO4	Output	LDO4 output
B2	DVDD	Power Supply	Power supply for Logic
B3	ASEL	Input	I ² C slave address select
B4	VREG	Output	Reference output
B5	VLDO1	Output	LDO1 output
C1	REF	Output	Reference output
C2	REGCNT	Input	Control to select power setting
C3	AGND	Ground	GND
C4	FB1	Input	DCDC1 voltage feedback
C5	DDVBAT1	Power Supply	DCDC1 input
D1	RESET	Input	Reset input for Logic
D2	SCL	Input	I ² C clock input
D3	SDA	Input/Output	I ² C data input/output
D4	DDGND1	Ground	GND
D5	LX1	Output	DCDC1 switching

Notes) Concerning detail about pin description, please refer to OPERATION and APPLICATION INFORMATION section.

FUNCTIONAL BLOCK DIAGRAM

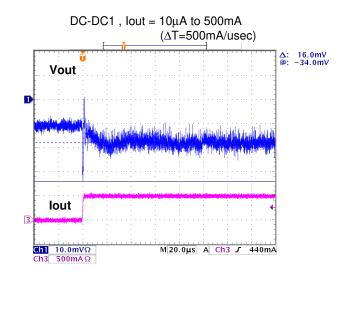

- Notes) This application circuit is an example. The operation of mass production set is not guaranteed. You should perform enough evaluation and verification on the design of mass production set. You are fully responsible for the incorporation of the above application circuit and information in the design of your equipment.
 - This block diagram is for explaining functions. Part of the block diagram may be omitted, or it may be simplified.

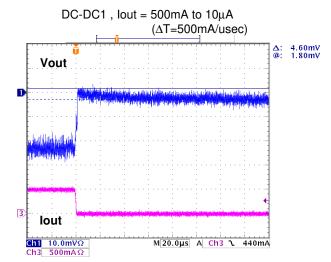
AN30183A

TYPICAL CHARACTERISTICS CURVES

(1) Output Ripple Voltage of DC-DC1

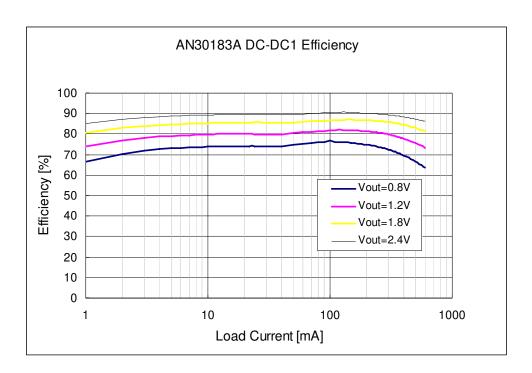
 $V_{IN} = 3.7 \text{ V}, \text{ DC-DC1}_\text{Vout} = 1.2 \text{ V}, \text{ L1} = 1 \text{ }\mu\text{H}, \text{ CDCDCOUT1} = 4.7 \text{ }\mu\text{F}$



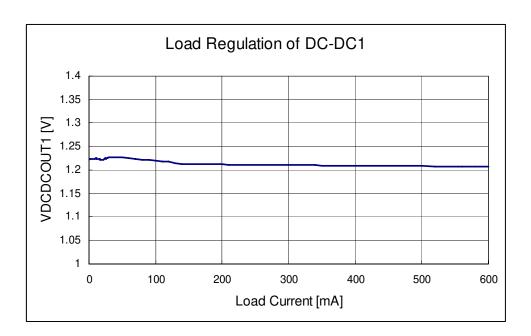

AN30183A

TYPICAL CHARACTERISTICS CURVES (Continued)

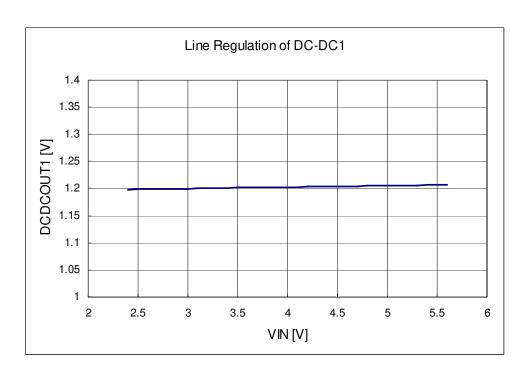
(2) Load Transient of DC-DC1


 V_{IN} = 3.7 V, DC-DC1_Vout = 1.2 V , L1 = 1 μ H , CDCDCOUT1 = 4.7 μ F

TYPICAL CHARACTERISTICS CURVES (Continued)


(3) Efficiency of DC-DC1 $$V_{IN}$$ = 3.7 V, DC-DC1_Vout = 1.2 V , L1 = 1 μH , CDCDCOUT1 $\,$ = 4.7 μF

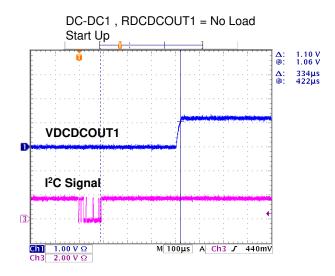
TYPICAL CHARACTERISTICS CURVES (Continued)

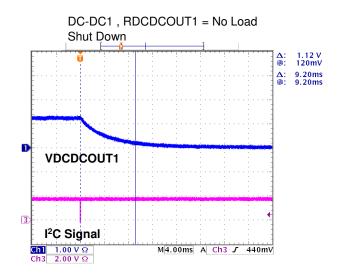

(4) Load Regulation of DC-DC1

 $V_{IN} = 3.7 \text{ V}, \text{ DC-DC1}_\text{Vout} = 1.2 \text{ V}, \text{ L1} = 1 \text{ }\mu\text{H}, \text{ CDCDCOUT1} = 4.7 \text{ }\mu\text{F}$

TYPICAL CHARACTERISTICS CURVES (Continued)

(5) Line Regulation of DC-DC1 lout = 300mA, DC-DC1_Vout = 1.2 V, L1 = 1 μH , CDCDCOUT1 = 4.7 μF , V_{IN} = 2.4V to 5.5V

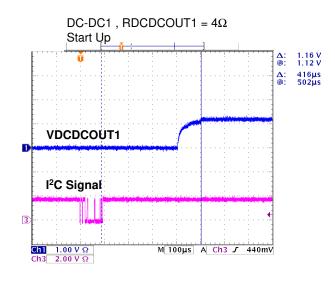


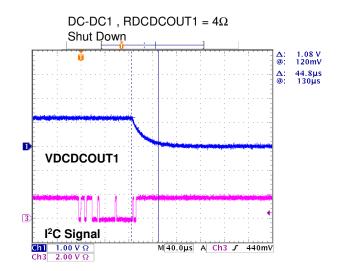

AN30183A

TYPICAL CHARACTERISTICS CURVES (Continued)

(6) Start Up & Shut Down of DC-DC1

 \dot{V}_{IN} = 3.7 \dot{V} , DC-DC1_Vout = 1.2 V, L1 = 1 µH , CDCDCOUT1 = 4.7 µF

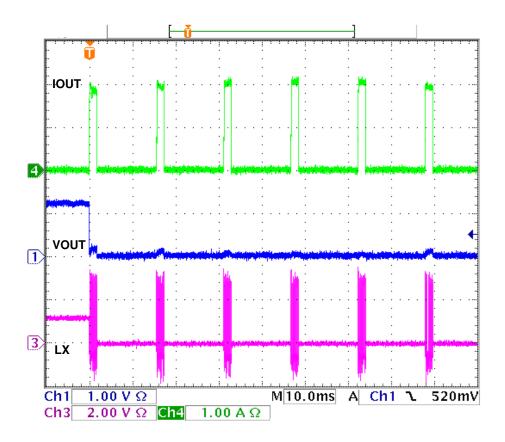



AN30183A

TYPICAL CHARACTERISTICS CURVES (Continued)

(7) Start Up & Shut Down of DC-DC1 (Continued)

 $V_{IN} = 3.7 \text{ V}, \text{ DC-DC1}_V \text{ out} = 1.2 \text{ V}, \text{ L1} = 1 \,\mu\text{H}, \text{ CDCDCOUT1} = 4.7 \,\mu\text{F}$

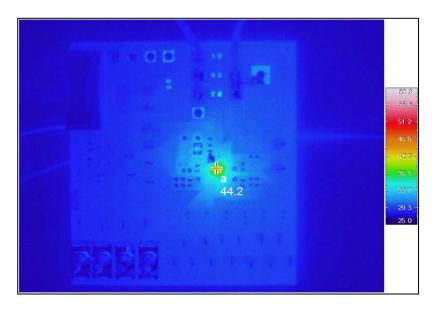


AN30183A

TYPICAL CHARACTERISTICS CURVES (Continued)

(8) Short Protection of DC-DC1

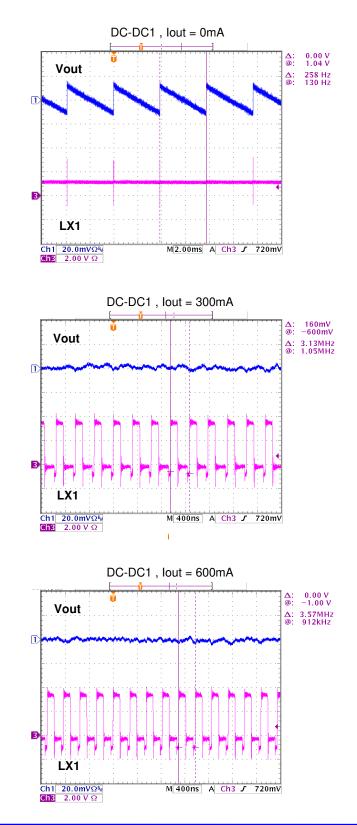
 $V_{IN} = 3.7 \text{ V}, \text{ DC-DC1}_\text{Vout} = 1.2 \text{ V}, \text{ L1} = 1 \text{ }\mu\text{H}, \text{ CDCDCOUT1} = 4.7 \text{ }\mu\text{F}$



AN30183A

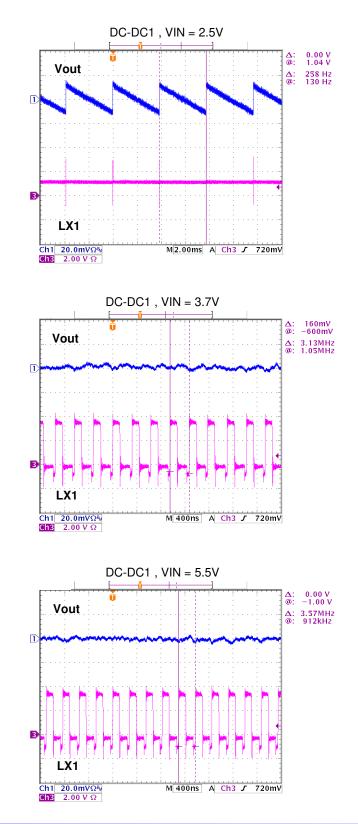
TYPICAL CHARACTERISTICS CURVES (Continued)

(9) Thermal Performance of DC-DC1


 $V_{IN} = 3.7 \text{ V}, \text{ DC-DC1}_V\text{out} = 1.2 \text{ V}, \text{ ILoad} = 600\text{mA}, \text{ L1} = 1 \text{ }\mu\text{H}, \text{ CDCDCOUT1} = 4.7 \text{ }\mu\text{F}$

AN30183A

TYPICAL CHARACTERISTICS CURVES (Continued)


(10) Frequency of DC-DC1 $$V_{\rm IN}$$ = 3.7 V, DC-DC1_Vout = 1.2 V, L1 = 1 μH , CDCDCOUT1 = 4.7 μF

AN30183A

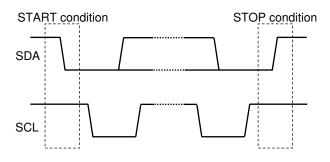
TYPICAL CHARACTERISTICS CURVES (Continued)

(11) Frequency of DC-DC1 (Continued) IOUT = 300mA, DC-DC1_Vout = 1.2 V, L1 = 1 μH , CDCDCOUT1 = 4.7 μF

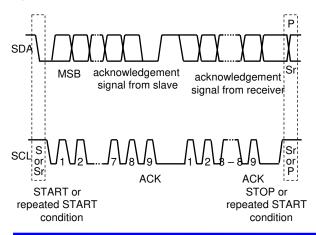
AN30183A

OPERATION

Note) The characteristics listed below are reference values derived from the design of the IC and are not guaranteed.


1. I²C-bus Interface

a.) Basic Rules


This IC, I2C-bus, is designed to correspond to the Standard-mode (100 kbps) and Fast-mode(400 kbps) devices in the version 2.1 of NXP's specification. However, it does not correspond to the HS-mode (to 3.4 Mbps). This IC will operate as a slave device in the I²Cbus system. This IC will not operate as a master device. The program operation check of this IC has not been conducted on the multi-master bus system and the mixspeed bus system, yet. The connected confirmation of this IC to the CBUS receiver also has not been checked. Please confirm with our company if the IC will be used in these mode systems. The I²C is the brand of NXP.

b.) START and STOP conditions

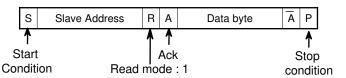
A High to Low transition on the SDA line while SCL is High is one such unique case. This situation indicates START condition. A Low to High transition on the SDA line while SCL is High defines STOP condition. START and STOP conditions are always generated by the master. After START condition occur, the bus will be busy. The bus is considered to be free again a certain time after the STOP condition.

Every byte put on the SDA line must be 8-bits long. The number of bytes that can be transmitted per transfer is unrestricted. Each byte has to be followed by an acknowledge bit. Data is transferred with the most significant bit (MSB) first.

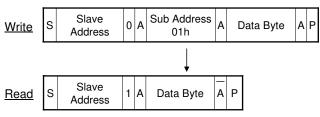
d.) Data format

Slave Address

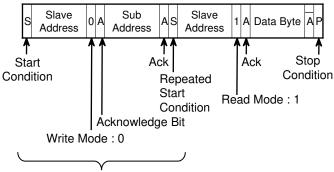
Pin ASEL	A6	A5	A4	A3	A2	A1	A0	R/W	Hex
Low	1	1	1	0	0	1	0	х	6Eh
High	1	1	1	0	0	1	1	х	6Fh


Write mode

s s	lave Address	w	A	Sub Address	A	Data Byte	A P
1		A	1				1
Start			Ac	:k			Stop
Start Ack Condition Write mode : 0						С	ondition


Read mode

d1.) When Sub address is not specified


When data is read without assigning sub-address, it is possible to read the value of sub-address specified in Write mode immediately before.

Ex) When writing data into address and reading data from "01 h".

d2.) When Sub address is specified

Sub-address should be assigned first.