mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

AN32058A

http://www.semicon.panasonic.co.jp/en/

7 x 7 Dots Matrix LED Driver LSI

FEATURES

- 7 x 7 LED Matrix Driver
 - (Total LED that can be driven = 49)
- Built-in memory (ROM and RAM)
- LDO : 2-ch
- SPI Interface : 1-ch
- Driver for RGB color unit : 1-ch
- 44 pin Plastic Quad Flat Non-leaded package (QFN Type)

DESCRIPTION

AN32058A is 49 Dots Matrix LED Driver. It can drive up to 16 RGB LEDs.

APPLICATIONS

- Mobile Phone
- Smart Phone
- PCs
- Game Consoles
- Home Appliances etc.

TYPICAL APPLICATION

Note)

The application circuit is an example. The operation of the mass production set is not guaranteed. Sufficient evaluation and verification is required in the design of the mass production set. The Customer is fully responsible for the incorporation of the above illustrated application circuit in the design of the equipment.

CONTENTS

FEATURES	1
DESCRIPTION	1
APPLICATIONS	1
TYPICAL APPLICATION	1
CONTENTS	2
ABSOLUTE MAXIMUM RATINGS	3
POWER DISSIPATION RATING	3
RECOMMENDED OPERATING CONDITIONS	4
ELECTRICAL CHARACTERISTICS	5
PIN CONFIGURATION	13
PIN FUNCTIONS	14
FUNCTIONAL BLOCK DIAGRAM	16
OPERATION	17
PACKAGE INFORMATION	33
IMPORTANT NOTICE	34

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Rating	Unit	Note
Supply voltage	VB _{MAX}	6.0	V	*1
Supply voltage	VLED _{MAX}	6.5	V	*1
Operating ambience temperature	Т _{орг}	– 30 to + 85	°C	*2
Operating junction temperature	Τ _j	– 30 to + 125	°C	*2
Storage temperature	T _{stg}	– 55 to + 125	°C	*2
Input Voltage Range	LEDCTL, RSTB, CE, CLK, DI	– 0.3 to 3.4	V	
	LDOCNT	– 0.3 to 6.0	V	_
	INT, DO	– 0.3 to 3.4	V	—
Output Voltage Range	R, G, B, LDO1, LDO2, X0, X1, X2, X3, X4, X5, X6, Y0, Y1, Y2, Y3, Y4, Y5, Y6	– 0.3 to 6.5	V	_
ESD	HBM (Human Body Model)	2.0	kV	_

Note) This product may sustain permanent damage if subjected to conditions higher than the above stated absolute maximum rating. This rating is the maximum rating and device operating at this range is not guaranteeable as it is higher than our stated recommended operating range.

When subjected under the absolute maximum rating for a long time, the reliability of the product may be affected.

*1 $VB_{MAX} = VB$, $VLED_{MAX} = VLED1 = VLED2$.

The values under the condition not exceeding the above absolute maximum ratings and the power dissipation.

*2 Except for the power dissipation, operating ambient temperature, and storage temperature, all ratings are for Ta = 25°C.

POWER DISSIPATION RATING

PACKAGE	θ_{JA}	P _D (Ta=25 °C)	Р _D (Та=85 °С)
44 pin Plastic Quad Flat Non-leaded package (QFN Type)	71.8 °C /W	1.392 W	0.557 W

Note) For the actual usage, please refer to the P_D-Ta characteristics diagram in the package specification, follow the power supply voltage, load and ambient temperature conditions to ensure that there is enough margin and the thermal design does not exceed the allowable value.

CAUTION

Although this IC has built-in ESD protection circuit, it may still sustain permanent damage if not handled properly. Therefore, proper ESD precautions are recommended to avoid electrostatic damage to the MOS gates

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min. Typ.		Max.	Unit	Note
	VB	3.1	3.7	4.6	V	*1
Supply voltage range	VLED	3.1	5.0	5.6	V	*1
Input Voltage Range	LEDCTL, RSTB, CE, CLK, DI	- 0.3	_	3.0	V	
	LDOCNT	- 0.3		VB + 0.3	V	*2
	INT, DO	- 0.3		3.0	V	_
Output Voltage Range	R, G, B, LDO1, LDO2, X0, X1, X2, X3, X4, X5, X6, Y0, Y1, Y2, Y3, Y4, Y5, Y6	- 0.3	_	VLED + 0.3	V	*2

Note) *1: The values under the condition not exceeding the above absolute maximum ratings and the power dissipation. Do not apply external currents and voltages to any pin not specifically mentioned. Voltage values, unless otherwise specified, are with respect to GND. GND is voltage for AGND, RGBGND and PGND. VB is voltage for VB. VLED is voltage for VLED1 and VLED2.

*2: (VB + 0.3) V must not exceed 6 V. (VLED + 0.3) V must not exceed 6.5 V.

ELECTRICAL CHARACTERISTICS

VB = 3.6 V, VLED1 = VLED2 = 4.9 V

Note) T_a = 25 °C \pm 2 °C unless otherwise specified.

	Deverseter	Symphol	Condition		Limits		11	Noto
	Parameter	Symbol	Condition	Min	Тур	Max	Unit	Note
Cu	rrent consumption							
	Current consumption (1)	ICC1	At OFF mode LDOCNT = Low	_	0	1	μA	_
	Current consumption (2)	ICC2	At Standby mode LDOCNT = Low LDO2 is active.	_	8	12	μA	_
	Current consumption (3)	ICC3	LDOCNT = High LDO1 and LDO2 are active.	_	18	24	μA	_
Reference voltage								
	Output voltage	VREF	I _{VREF} = 0 μA	1.21	1.24	1.27	V	_
Reference current								
	Output voltage	VIREF	I _{IREF} = 0 μA	0.44	0.54	0.64	V	_
Vo	Itage regulator (LDO1)							
	Output voltage	VL1	I _{LDO1} = – 30 mA	1.79	1.85	1.91	V	_
	Short circuit protection current	IPT1	LDOCNT = High REG18 = High V _{LDO1} = 0 V, IPT1 = I _{LDO1}	50	100	200	mA	_
	Ripple rejection (1)	PSL11	VB = 3.6 V + 0.2 V[p-p] f = 1 kHz I _{LDO1} = -15 mA PSL11 = $20\log (acV_{LDO1} / 0.2)$		- 45	- 40	dB	_
	Ripple rejection (2)	PSL12	VB = 3.6 V + 0.2 V[p-p] f = 10 kHz I _{LDO1} = -15 mA PSL12 = $20\log (acV_{LDO1} / 0.2)$	_	- 35	- 25	dB	_

ELECTRICAL CHARACTERISTICS (continued)

VB = 3.6 V, VLED1 = VLED2 = 4.9 V

Note) $T_a = 25 \ ^\circ C \pm 2 \ ^\circ C$ unless otherwise specified.

	Peremeter	Symbol	umbol Condition		Limits		Unit	Note
	Farameter	oymoor oonanion		Min	Тур	Max	Unit	Note
Vo	Itage regulator (LDO2)							
	Output voltage	VL2	I _{LDO2} = – 30 mA	2.76	2.85	2.94	V	_
	Short circuit protection current	IPT2	LDOCNT = High $V_{LDO2} = 0V$ IPT2 = I _{LDO2}	50	100	300	mA	_
	Ripple rejection (1)	PSL21	VB = $3.6 V + 0.2 V[p-p]$ f = 1 kHz I _{LDO2} = $-15 mA$ PSL21 = 20log (acV _{LDO2} / 0.2)	_	- 35	- 30	dB	_
	Ripple rejection (2)	PSL22	VB = 3.6 V + 0.2 V[p-p] f = 10 kHz I _{LDO2} = – 15 mA PSL22 = 20log (acV _{LDO2} / 0.2)	_	- 25	- 15	dB	_
Os	cillator							
	Oscillation frequency	FDC	—	0.96	1.20	1.44	MHz	
so	SCAN Switch							
	Resistance at the Switch ON	RSCAN	I _{Y0, Y1, Y2, Y3, Y4, Y5, Y6} = 5 mA RSCAN = V _{Y0, Y1, Y2, Y3, Y4, Y5, Y6} / 5 mA		2	4.8	Ω	

ELECTRICAL CHARACTERISTICS (continued)

VB = 3.6 V, VLED1 = VLED2 = 4.9 V

Note) $~~T_a$ = 25 $^{\circ}C$ \pm 2 $^{\circ}C$ unless otherwise specified.

Parameter		Condition		Unit	Note		
	Symbol	Condition	Min	Тур	Max	Unit	Note
rent generator (For 7×7 dots	s matrix LE	ED)					
Output current (1)	IMX1	At 1mA setup	0.950	1 033	1 116	mΔ	*1
		$V_{X0, X1, X2, X3, X4, X5, X6} = 1 V$ IMX1 = I _{X0, X1, X2, X3, X4, X5, X6}	0.000	1.000	1.110		1
		At 2 mA setup					
Output current (2)	IMX2		1.907	2.073	2.239	mA	*1
		At 4 mA setup					
Output current (3)	IMX4		3.824	4.157	4.490	mA	*1
	IMX8	At 8 mA setup			8.992	mA	*1
Output current (4)		$V_{X0, X1, X2, X3, X4, X5, X6} = 1 V$ IMX8 = $I_{X0, X1, X2, X3, X4, X5, X6}$	7.660	8.326			
		At 15 mA setup					
Output current (5)	IMX15	$V_{X0, X1, X2, X3, X4, X5, X6} = 1 V$ IMX15 = $I_{X0, X1, X2, X3, X4, X5, X6}$	14.408	15.661	16.914	mA	*1
Lookago Current		Current OFF setup					
when matrix LED turns off	IMXOFF	V _{X0, X1, X2, X3, X4, X5, X6} = 4.75 V IMXOFF = I _{X0, X1, X2, X3, X4, X5, X6}	_	—	1	μΑ	_
The error between channels	IMXCH	The average value of all channels, and the current error of each channel	- 5	_	5	%	_
	rent generator (For 7 × 7 dots Output current (1) Output current (2) Output current (3) Output current (4) Output current (5) Leakage Current when matrix LED turns off The error between channels	rent generator (For 7 × 7 dots matrix LEOutput current (1)IMX1Output current (2)IMX2Output current (3)IMX4Output current (4)IMX8Output current (5)IMX15Leakage Current when matrix LED turns offIMXOFFThe error between channelsIMXCH	rent generator (For 7 × 7 dots matrix LED)Output current (1)IMX1At 1mA setup $V_{x0, x1, x2, x3, x4, x5, x6} = 1 V$ $IMX1 = I_{x0, x1, x2, x3, x4, x5, x6}$ Output current (2)IMX2At 2 mA setup $V_{x0, x1, x2, x3, x4, x5, x6} = 1 V$ $IMX2 = I_{x0, x1, x2, x3, x4, x5, x6} = 1 V$ $IMX2 = I_{x0, x1, x2, x3, x4, x5, x6}$ Output current (3)IMX4At 4 mA setup $V_{x0, x1, x2, x3, x4, x5, x6} = 1 V$ $IMX4 = I_{x0, x1, x2, x3, x4, x5, x6}$ Output current (4)IMX8At 8 mA setup $V_{x0, x1, x2, x3, x4, x5, x6} = 1 V$ $IMX8 = I_{x0, x1, x2, x3, x4, x5, x6} = 1 V$ $IMX8 = I_{x0, x1, x2, x3, x4, x5, x6} = 1 V$ $IMX8 = I_{x0, x1, x2, x3, x4, x5, x6} = 1 V$ $IMX8 = I_{x0, x1, x2, x3, x4, x5, x6} = 1 V$ $IMX15Output current (5)IMX15At 8 mA setupV_{x0, x1, x2, x3, x4, x5, x6} = 1 VIMX15 = I_{x0, x1, x2, x3, x4, x5, x6} = 1 VIMX15 = I_{x0, x1, x2, x3, x4, x5, x6} = 1 VIMX15 = I_{x0, x1, x2, x3, x4, x5, x6} = 1 VIMX15 = I_{x0, x1, x2, x3, x4, x5, x6} = 1 VIMX15 = I_{x0, x1, x2, x3, x4, x5, x6} = 1 VIMX0FF = I_{x0, x1, x2, x3, x4, x5, x6} = 1 VIMXOFF = I_{x0, x1, x2, x3, x4, x5, x6} = 1 VIMXOFF = I_{x0, x1, x2, x3, x4, x5, x6} = 1 VIMXOFF = I_{x0, x1, x2, x3, x4, x5, x6} = 1 VIMXOFF = I_{x0, x1, x2, x3, x4, x5, x6} = 1 VIMXOFF = I_{x0, x1, x2, x3, x4, x5, x6}$	rent generator (For 7 × 7 dots matrix LED)Output current (1)IMX1At 1mA setup $V_{x0, x1, x2, x3, x4, x5, x6} = 1 V$ $IMX1 = I_{x0, x1, x2, x3, x4, x5, x6} = 1 V$ $IMX2 = I_{x0, x1, x2, x3, x4, x5, x6} = 1 V$ $IMX2 = I_{x0, x1, x2, x3, x4, x5, x6} = 1 V$ $IMX2 = I_{x0, x1, x2, x3, x4, x5, x6} = 1 V$ $IMX2 = I_{x0, x1, x2, x3, x4, x5, x6} = 1 V$ $IMX2 = I_{x0, x1, x2, x3, x4, x5, x6} = 1 V$ $IMX4 = I_{x0, x1, x2, x3, x4, x5, x6} = 1 V$ $IMX4 = I_{x0, x1, x2, x3, x4, x5, x6} = 1 V$ $IMX4 = I_{x0, x1, x2, x3, x4, x5, x6} = 1 V$ $IMX4 = I_{x0, x1, x2, x3, x4, x5, x6} = 1 V$ $IMX8 = I_{x0, x1, x2, x3, x4, x5, x6} = 1 V$ $IMX8 = I_{x0, x1, x2, x3, x4, x5, x6} = 1 V$ $IMX15 = I_{x0, x1, x2, x3, x4, x5, x6} = 1 V$ $IMX15 = I_{x0, x1, x2, x3, x4, x5, x6} = 1 V$ $IMX15 = I_{x0, x1, x2, x3, x4, x5, x6} = 1 V$ $IMX15 = I_{x0, x1, x2, x3, x4, x5, x6} = 1 V$ $IMX15 = I_{x0, x1, x2, x3, x4, x5, x6} = 1 V$ $IMX15 = I_{x0, x1, x2, x3, x4, x5, x6} = 1 V$ $IMX15 = I_{x0, x1, x2, x3, x4, x5, x6} = 1 V$ $IMX0FF = I_{x0, x1, x2, x3, x4, x5, x6} = 1 V$ $IMX0FF = I_{x0, x1, x2, x3, x4, x5, x6} = 1 V$ $IMX0FF = I_{x0, x1, x2, x3, x4, x5, x6} = 1 - 0$ $IMX0FF = I_{x0, x1, x2, x3, x4, x5, x6} = 1 - 0$ $IMX0FF = I_{x0, x1, x2, x3, x4, x5, x6} = 1 - 0$ $IMX0FF = I_{x0, x1, x2, x3, x4, x5, x6} = 1 - 0$ $IMX0FF = I_{x0, x1, x2, x3, x4, x5, x6} = 1 - 0$ $IMX0FF = I_{x0, x1, x2, x3, x4, x5, x6} = 1 - 0$ $IMX0FF = I_{x0, x1, x2, x3, x4, x5, x6} = 1 - 0$ $IMX0FF = I_{x0, x1, x2, x3, x4, x5, x6} = 1 - 0$ $IMX0FF = I_{x0, x1, x2, x3, x4, x5, x6} = 1 - 0$ $IMX0FF = I_{x0, x1, x2, x3, x4, x5, x6} = 1 - 0$ $IMX0FF = I_{x0, x1, x2, x3, x4, x5, x6} = 1 - 0$ $IMX0FF = I_{x0, x1, x2, x3, x4, x5, x6} = 1 - 0$ $IMX0FF = I_{x0, x1, x2, x3, x4, x5, x6} = 1 - 0$ $IMX0FF = I_{x0, x1, x2, x3, x4, x5, x6} = 1 - 0$ $IMX0FF = I_{x0, x1, x2, x3, x4, x5, x6}$	rent generator (For 7 × 7 dots matrix LED)Output current (1)IMX1At 1mA setup $V_{x0, x1, X2, X3, X4, X5, X6} = 1 V$ $IMX1 = I_{x0, x1, X2, X3, X4, X5, X6}$ 0.9501.033Output current (2)IMX2At 2 mA setup $V_{x0, x1, X2, X3, X4, X5, X6} = 1 V$ $IMX2 = I_{x0, x1, X2, X3, X4, X5, X6}$ 1.9072.073Output current (3)IMX4At 4 mA setup $V_{x0, x1, X2, X3, X4, X5, X6} = 1 V$ $IMX4 = I_{x0, x1, X2, X3, X4, X5, X6}$ 3.8244.157Output current (4)IMX8At 4 mA setup $V_{x0, x1, X2, X3, X4, X5, X6} = 1 V$ $IMX8 = I_{x0, x1, X2, X3, X4, X5, X6}$ 7.6608.326Output current (5)IMX15At 15 mA setup $V_{x0, x1, X2, X3, X4, X5, X6} = 1 V$ $IMX15 = I_{x0, x1, X2, X3, X4, X5, X6}$ 14.40815.661Leakage Current when matrix LED turns offIMXOFFCurrent OFF setup $V_{x0, x1, x2, x3, x4, x5, x6} = 4.75 V$ $IMXOFF = I_{x0, x1, x2, x3, x4, x5, x6}$ The error between channelsIMXCHThe average value of all channels, and the current error of each channel-5	rent generator (For 7 × 7 dots matrix LED) Output current (1) IMX1 At 1mA setup $V_{x0, X1, X2, X3, X4, X5, X6} = 1 V$ IMX1 = $I_{x0, X1, X2, X3, X4, X5, X6}$ 0.950 1.033 1.116 Output current (2) IMX2 At 2 mA setup $V_{x0, X1, X2, X3, X4, X5, X6} = 1 V$ IMX2 = $I_{x0, X1, X2, X3, X4, X5, X6} = 1 V$ 1.907 2.073 2.239 Output current (2) IMX2 At 4 mA setup $V_{x0, X1, X2, X3, X4, X5, X6} = 1 V$ IMX4 = $I_{x0, X1, X2, X3, X4, X5, X6} = 1 V$ 3.824 4.157 4.490 Output current (3) IMX4 At 8 mA setup $V_{x0, X1, X2, X3, X4, X5, X6} = 1 V$ IMX8 = $I_{x0, X1, X2, X3, X4, X5, X6} = 1 V$ 3.824 4.157 4.490 Output current (4) IMX8 At 8 mA setup $V_{x0, X1, X2, X3, X4, X5, X6} = 1 V$ IMX8 = $I_{x0, X1, X2, X3, X4, X5, X6} = 1 V$ IMX8 = $I_{x0, X1, X2, X3, X4, X5, X6} = 1 V$ IMX15 7.660 8.326 8.992 Output current (5) IMX15 Current OFF setup $V_{x0, X1, X2, X3, X4, X5, X6} = 1 V$ IMXOFF = $I_{x0, X1, X2, X3, X4, X5, X6} = 1 - V$ IMXOFF = $I_{x0, X1, X2, X3, X4, X5, X6} = 1 - V$ 14.408 15.661 16.914 Leakage Current when matrix LED turns off IMXOFF Current OFF setup $V_{x0, X1, X2, X3, X4, X5, X6} = 4.75 V$ IMXOFF = $I_{x0, X1, X2, X3, X4, X5, X6} = 1 - 5$ 1 The error between channels IMXCH <	rent generator (For 7 × 7 dots matrix LED) Output current (1) IMX1 At 1mA setup $V_{x0, x1, x2, x3, x4, x5, x6} = 1 V$ $IMX1 = I_{x0, x1, x2, x3, x4, x5, x6}$ 0.950 1.033 1.116 mA Output current (2) IMX2 At 2 mA setup $V_{x0, x1, x2, x3, x4, x5, x6} = 1 V$ $IMX2 = I_{x0, x1, x2, x3, x4, x5, x6}$ 1.907 2.073 2.239 mA Output current (3) IMX4 At 4 mA setup $V_{x0, x1, x2, x3, x4, x5, x6} = 1 V$ $IMX4 = I_{x0, x1, x2, x3, x4, x5, x6}$ 3.824 4.157 4.490 mA Output current (3) IMX8 At 8 mA setup $V_{x0, x1, x2, x3, x4, x5, x6} = 1 V$ $IMX8 = I_{x0, x1, x2, x3, x4, x5, x6}$ 3.824 4.157 4.490 mA Output current (4) IMX8 At 8 mA setup $V_{x0, x1, x2, x3, x4, x5, x6} = 1 V$ $IMX8 = I_{x0, x1, x2, x3, x4, x5, x6}$ 7.660 8.326 8.992 mA Output current (5) IMX15 Current OFF setup $V_{x0, x1, x2, x3, x4, x5, x6} = 1 V$ $IMX0FF 14.408 15.661 16.914 mA Leakage Currentwhen matrix LED turns off IMXOFF Current OFF setupV_{x0, x1, x2, x3, x4, x5, x6} = 4.75 VIMXOFF = I_{x0, x1, x2, x3, x4, x5, x6} 1 \mu A The error between channels IMXCH The average value of allchannels, and the $

*1 : Values when recommended parts (ERJ2RHD273X) are used for IREF terminal. The other current settings are combination of above items.

ELECTRICAL CHARACTERISTICS (continued)

VB = 3.6 V, VLED1 = VLED2 = 4.9 V

Note) $T_a = 25 \ ^\circ C \pm 2 \ ^\circ C$ unless otherwise specified.

Paramotor		Symbol	Condition		Limits		Unit	Note
	Farameter	Symbol	Condition	Min	Тур	Max	Unit	Note
Cu	rrent generator (For RGB color	· unit)						
	Output current (1)	IRGB1	At 1mA setup V _{R, G, B} = 1 V	0.949	1.031	1.113	mA	*1
	Output current (2)	IRGB2	At 2 mA setup V _{R, G, B} = 1 V	1.892	2.056	2.220	mA	*1
	Output current (3)	IRGB4	At 4 mA setup V _{R, G, B} = 1 V	3.764	4.091	4.418	mA	*1
	Output current (4)	IRGB8	At 8 mA setup V _{R, G, B} = 1 V	7.510	8.163	8.816	mA	*1
	Leakage Current when RGB turn off	IRGBOFF	Current OFF setup $V_{R, G, B}$ = 4.75 V IRGBOFF = I _{R, G, B}	_	—	1	μΑ	_
	The error between channels	IRGBCH	The average value of all channels, and the current error of each channel	- 5	_	5	%	

*1 : Values when recommended parts (ERJ2RHD273X) are used for IREF terminal. The other current settings are combination of above items.

ELECTRICAL CHARACTERISTICS (continued)

VB = 3.6 V, VLED1 = VLED2 = 4.9 V

Note) T_a = 25 °C \pm 2 °C unless otherwise specified.

	Devemeter	Sumbol	Symbol		Limits			Note
	Parameter	Symbol	Condition	Min	Тур	Max	Unit	Note
SP	I I/F, LEDCTL, RSTB							
	Input voltage range of High- level	VIH	High-level recognition voltage	LDO1 × 0.8		LDO2 + 0.3	V	_
	Input voltage range of Low- level	VIL	Low-level recognition voltage	- 0.3		0.4	V	_
	Input current of High-level	ШΗ	V _{LEDCTL, RSTB, CE, CLK, DI} = 1.85 V IIH = I _{LEDCTL, RSTB, CE, CLK, DI}	_	0	1	μA	
	Input current of Low-level	IIL	V _{LEDCTL, RSTB, CSB, CLK, DI} = 0 V IIL = I _{LEDCTL, RSTB, CE, CLK, DI}		0	1	μA	_
ΙΝ٦	-							
	Output voltage of High-level (1)	VOH1	I _{INT} = – 2 mA VDDSEL = LDO2	LDO2 × 0.8		_	V	_
	Output voltage of Low-level (1)	VOL1	I _{INT} = 2 mA VDDSEL = LDO2 (I _{INT} = 0.5 mA)	_		LDO2 ×0.2 (0.15)	V	_
	Output voltage of High-level (2)	VOH2	I _{INT} = – 2 mA VDDSEL = LDO1	LDO1 × 0.8		_	V	_
	Output voltage of Low-level (2)	VOL2	I _{INT} = 2 mA VDDSEL = LDO1 (I _{INT} = 0.5 mA)	_		LDO1 ×0.3 (0.15)	V	

ELECTRICAL CHARACTERISTICS (continued)

VB = 3.6 V, VLED1 = VLED2 = 4.9 V

Note) T_a = 25 °C \pm 2 °C unless otherwise specified.

	Parameter		Condition		Limits		Unit	Noto
	Farameter	Symbol		Min	Тур	Max	Unit	Note
LD	OCNT							
	Input voltage range of High-level	VIH	High-level recognition voltage	VB × 0.7	_	VB + 0.3	V	_
	Input voltage range of Low-level	VIL	Low-level recognition voltage	- 0.3		0.4	V	
	Input current of High-level	ШН	$V_{LDOCNT} = 3.6 V$ IIH = I _{LDOCNT}	_	0	1	μA	_
	Input current of Low-level	IIL	$V_{LDOCNT} = 0 V$ IIL = I _{LDOCNT}		0	1	μA	_
DO								
	Output voltage of High-level	VOH	I _{DO} = – 2 mA	LDO1 × 0.8	_	_	V	
	Output voltage of Low-level	VOL	I _{DO} = 2 mA	_	_	LDO1 × 0.2	V	_

ELECTRICAL CHARACTERISTICS (continued)

VB = 3.6 V, VLED1 = VLED2 = 4.9 V

Note) $T_a = 25 \circ C \pm 2 \circ C$ unless otherwise specified.

	Baramatar	Symbol	Condition		Limits		Unit	Note
	Farameter	Symbol	Condition	Min	Тур	Max	Unit	Note
Vo	tage regulator (LDO1) Output	capacitor	1 μ F, Output capacitor's ESR less t	than 0.	1Ω			
	Rise time	Tsu1	Time until output voltage reaches to 0 V to 90%		0.25		ms	*2 *3
	Fall time	Tsd1	Time until output voltage reaches to 10%		5	_	ms	*2 *3
	Maximum load current	IOMAX1	_	_	15		mA	*3
	Load transient response (1)	Vtr11	I_{LDO1} = – 50 μ A \rightarrow – 15 mA (1 μ s)	_	70		mV	*3
	Load transient response (2)	Vtr12	I_{LDO1} = – 15 mA \rightarrow – 50 μ A (1 μ s)	_	70		mV	*3
Vo	Voltage regulator (LDO2) Output capacitor 1 μ F, Output capacitor's ESR less than 0.1 Ω							
	Rise time	Tsu2	Time until output voltage reaches to 0 V to 90%		0.25		ms	*2 *3
	Fall time	Tsd2	Time until output voltage reaches to 10%		5		ms	*2 *3
	Maximum load current	IOMAX2	_	_	15		mA	*3
	Load transient response (1)	Vtr21	I_{LDO2} = – 50 μ A \rightarrow – 15 mA (1 μ s)	_	70		mV	*3
	Load transient response (2)	Vtr22	I_{LDO2} = – 15 mA \rightarrow – 50 μ A (1 μ s)		70		mV	*3
TS	D (Thermal shutdown circuit)							
	Detection temperature	Tdet	Temperature which LDO1, LDO2, Constant current circuit, Matrix SW and RGB turns off.		160		°C	*3 *4
	Return temperature	Tsd11	Returning temperature		110	_	°C	*3 *5

Note) *2 : Rise time and Fall time are defined as below.

*3 : Typical Design Value

*4 : LDO1, LDO2, Constant current circuit, and Matrix SW and RGB are turned off when TSD is High.

When TSD is High, the register is set as 14hD1 = 1. However, data can be read only when the register is read immediately after INT occurs since internal regulator is turned off.

*5 : Only LDO1 and LDO2 return after ON state of TSD. A logic part will be in Reset state.

ELECTRICAL CHARACTERISTICS (continued)

VB = 3.6 V, VLED1 = VLED2 = 4.9 V

Note) $~~T_a$ = 25 $^{\circ}C \pm 2 \ ^{\circ}C$ unless otherwise specified.

Beremeter	Symbol Condition		Limits		Unit	Note	
Parameter	Symbol	Condition	Min	Тур	Max	Unit	Note
Microcomputer interface character	istic (Vdd =	= 1.85 V ± 3 %) Write a	ccess Ti	ming			
CLK cycle time	tscyc1	_	_	125	_	ns	*3
CLK cycle time High period	twhc1	_	_	60	_	ns	*3
CLK cycle time Low period	twlc1			60		ns	*3
Serial-data setup time	tss1			62		ns	*3
Serial-data hold time	tsh1			62		ns	*3
Transceiver interval	tcsw1			62		ns	*3
Chip enable setup time	tcss1			5		ns	*3
Chip enable hold time	tcgh1			5		ns	*3
Microcomputer interface character	istic (Vdd =	1.85 V ± 3 %) Read ad	ccess Til	ming			
CLK cycle time	tscyc1	_	_	125	_	ns	*3
CLK cycle time High period	twhc1			60	_	ns	*3
CLK cycle time Low period	twlc1			60		ns	*3
Serial-data setup time	tss1			62		ns	*3
Serial-data hold time	tsh1			62		ns	*3
Transceiver interval	tcsw1	_		62		ns	*3
Chip enable setup time	tcss1			5		ns	*3
Chip enable hold time	tcgh1			5		ns	*3
DC delay time	tdodly1	Only read mode		25	_	ns	*3

Note) *3 : Typical Design Value

Timing chart

PIN CONFIGURATION

PIN FUNCTIONS

Pin No.	Pin name	Туре	Description			
1 10 11 12 22 23 32 33 44	N.C.		No Connection			
2	VB	Power supply	he power supply's connect terminal for BGR circuit and LDO circuit.			
3	LDO1	Output	LDO1(1.85 V)output terminal.			
4	RSTB	Input	Reset input terminal ("L" active)			
5	IREF	Output	The resistance connect terminal for constant current value setup.			
6	LDOCNT	Input	ON/OFF control terminal of LDO1 and LDO2.			
7	VREFD	Output	BGR circuit output terminal.			
8	AGND	Ground	The GND terminal for Analog circuitry.			
9	Y6	Output	The output terminal of matrix switching control. It connects with the G Column of matrix LED.			
13 18	VLED2 VLED1	Power supply	The power supply's connect terminal for matrix LED. Connect with the output of battery or step-up DC/DC converter			
14	Y5	Output	The output terminal of matrix switching control. It connects with the F Column of matrix LED.			
15	Y4	Output	The output terminal of matrix switching control. It connects with the E Column of matrix LED.			
16	Y3	Output	The output terminal of matrix switching control. It connects with the D Column of matrix LED.			
17	Y2	Output	The output terminal of matrix switching control. It connects with the C Column of matrix LED.			
19	Y1	Output	The output terminal of matrix switching control. It connects with the B Column of matrix LED.			
20	Y0	Output	The output terminal of matrix switching control. It connects with the A Column of matrix LED.			
21	LEDCTL	Input	LED's lighting ON/OFF control terminal. (It is based on register 0Ah.)			

PIN FUNCTIONS (continued)

Pin No.	Pin name	Туре	Description			
24	X0	Output	Constant current circuit. The output terminal of PWM control. It connects with the 1st Row of matrix LED.			
25	X1	Output	Constant current circuit. The output terminal of PWM control. It connects with the 2nd Row of matrix LED.			
26	X2	Output	Constant current circuit. The output terminal of PWM control. t connects with the 3rd Row of matrix LED.			
27	X3	Output	Constant current circuit. The output terminal of PWM control. It connects with the 4th Row of matrix LED.			
28	PGND	Ground	The GND terminal for matrix LED			
29	X4	Output	Constant current circuit. The output terminal of PWM control. It connects with the 5th Row of matrix LED.			
30	X5	Output	Constant current circuit. The output terminal of PWM control. It connects with the 6th Row of matrix LED.			
31	X6	Output	Constant current circuit. The output terminal of PWM control. It connects with the 7th Row of matrix LED.			
34	R	Output	LED contact terminal.			
35	RGBGND	Ground	The GND terminal for RGB terminal.			
36	G	Output	LED contact terminal.			
37	В	Output	LED contact terminal.			
38	DO	Output	Data output terminal for SPI interface.			
39	DI	Input	Data input terminal for SPI interface.			
40	CLK	Input	Clock input terminal for SPI interface.			
41	CE	Input	Chip-enable terminal for SPI1 interface. ("H" active)			
42	INT	Output	Interrupt output terminal.			
43	LDO2	Output	LDO2 (2.85 V) output terminal.			

FUNCTIONAL BLOCK DIAGRAM

Notes: This block diagram is for explaining functions. Part of the block diagram may be omitted, or it may be simplified.

Established : 2007-05-24 Revised : 2013-04-15

OPERATION

1. Explanation in each mode (Power supply starting sequence)

Mode	LDOCNT	REG18	REG28	Note			
OFF	Low	0	0	 It is necessary to make it LDOCNT = High for the return from OFF-mode. 			
OFF →	"L" → "H"	0/1	0/1	 The signal from serial interface is not received in LDOCNT = Low and the state of REG28 = Low or REG18 = Low. It shifts to standby mode with LDOCNT = Low and REG28 = High. The signal from serial interface is not received at Standby-mode. (Power supply for Logic is LDO1 and LDO2.) Therefore, standby release by the signal from 			
Normal mode				 serial interface cannot be performed. In Standby-mode, if LDOCNT is switched to High from 			
	"H"	0/1	0/1	 Low, it will return to the normal mode. It cannot shift to OFF-mode from Standby-mode. Once returning to the normal mode, please shift to OFF-mode. 			
Normal mode → OFF		0	0	 Regardless of the value of REG18, LDO1 turns on at LDOCNT = High. Regardless of the value of REG28, LDO2 turns on at LDOCNT = High. Serial interface signal is not received at RSTB = Low 			
Normal mode → Standby mode	"H" → "L"	0	1	 5 ms after being set to LDOCNT = High, the receptionist of serial interface signal is attained. RSTB terminal prohibits the input signal of those other than a rectangle wave. All register setting become default setting if RSTB = Low (The default setting of REG18 and REG28 are [1] If RSTB = Low before LDOCNT = Low, LDO1 and LDO2 can't turn off.) All register setting become default setting when LDO2 turn off. The setting order to change off mode is as following. REG18, 28 = [0] → LDOCNT = "L" → RSTB = "L" 			

1. Explanation in each mode (Power supply starting sequence) (continued)

• Shift to the Normal mode from OFF-mode

* Maintain the state of RSTB = High to hold the register setup.

1. Explanation in each mode (Power supply starting sequence) (continued)

· Shift to the OFF-mode from Normal mode

· Shift to the Standby mode from Normal mode

1. Explanation in each mode (Power supply starting sequence) (continued)

· Shift to the OFF-mode from Normal mode

VBAT	LDOCNT	MODE		
"L"	"L"	OFF		
"L"	"H"	Prohibition		
"H"	"L"	OFF		
"H"	"H"	ON		

Note) "L" in column of VBAT and LDOCNT means 0 V, "H" means 3.1 to 4.6 V (operating supply voltage range).

Logic pin condition

The following setting is common for OFF, Standby and Normal mode. The pin setting when RSTB = Low, under Normal mode is as follows.

Pin name	Pin state	Logic*		
INT	Output	"L"		
CE	Input	"L"		
CLK	Input	"L"		
DI	Input	"L"		
DO	Output	"L"		
LEDCTL	Input	"L"		
LDOCNT	Input	Depends on each mode		

Note)*: Logic state for pins indicated as "Output" under Pin state shows the output level. Logic state for pins indicated as "Input" under Pin state shows the input level to be set to the pins.

2. Explanation of operation

- · Matrix part operation waveform
- The following waveform is an internal signal. In following Yx = Xx = Low, the waveform of actual Yx terminal is set to Hi-Z.
- It is controlled by internal 1.2 MHz clock in default condition.
- Y side switches from Y0 to Y6 in that order. The turning on term of each pin is constant 945clock (787.5 μs) and each turning on term includes 8clock (6.67 μs) interval.
- "*" mark shows the turning on term and D3, D6 is the turning off term in the following figure.
- 7×7 matrix display is controlled by X0 to X6 with Yx switching timing.

3. Block configuration

RESET part block configuration

All the logic portions to which the power supply is not connected are connected to VB as power supplies.

3. Block configuration (continued)

- Explanation of matrix LED part, matrix LED's number
- LED matrix driver circuit can display character and pattern by controlling the 7×7 matrix LED individually.
- In this specification, LED's number controlled by each terminal can be matched off against the following figure.
- It is controlled by internal 1.2 MHz clock in default condition.
- In the scroll mode, LED matrix can move the display of character from right to left as the following arrangement.

3. Block configuration (continued)

• Equivalent circuit of matrix LED driver

X0 terminal case

- The reference current for constant current driver is calculated by the following formula. V(IREF) / R(IREF) = 0.54 V / 27 k Ω = 20 μ A
- The LED driver current can be set from 0 mA to 30 mA by register setting via serial interface.
- The constant current value can be changed by the external resistor value of IREF terminal, but the accuracy in case of that setting is not guaranteed.
- ERJ2RHD273X is recommended for the external resistor of IREF terminal to keep the constant current accuracy.

- 4. Register and Address
 - Register Map

Sub address	R/W	Data name	Data							
			D7	D6	D5	D4	D3	D2	D1	D0
01h	W	POWERCNT	_					OSCEN	—	_
02h	W	LDOCNT						_	REG18	REG28
03h	For test									
04h	For test									
05h	For test									
06h	For test									
07h	For test									
08h	For test									
09h					For	test				
0Aḥ	W	LEDCTL	LEDACT	—				DISMTX	DISRGB	_
10h					For	test				
11h					For	test				
12h	For test									
13h	For test									
14h	R	IOFACTOR	FACGD1	_	_	_	RAM ACT	FRMINT	CPUWRER	TSD
15h	For test									
16h	For test									
17h	For test									
18h	For test									
19h	For test									
1Ah	W/R	VDDSEL	INTVSEL							