

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

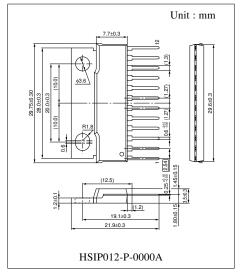
Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

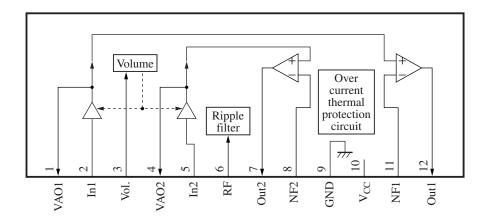
AN5272

$4.0~W \times 2~(18~V,~8~\Omega)$ Power Amplifier with Variable Audio Output and Volume Control

■ Overview


The AN5272 is a monolithic integrated circuit designed for 4.0 W (18 V, 8 Ω) output audio power amplifier. It is a dual channel SEPP IC suitable for stereo operation in TV application.

■ Features


- Built-in DC volume control
- Built-in thermal protection circuit
- Built-in over current protection circuit
- 2 Variable Audio Output (VAO)
- \bullet V_{CC} operating range : 12.2 V to 27.5 V

■ Applications

• TV

■ Block Diagram

■ Pin Descriptions

Pin No.	Description	Pin No.	Description
1	Variable audio output 1	7	Ch.2 output
2	Ch.1 input	8	Negative feedback ch.2
3	Volume control	9	GND
4	Variable audio output 2	10	V _{CC}
5	Ch.2 input	11	Negative feedback ch.1
6	Ripple filter	12	Ch.1 output

■ Absolute Maximum Ratings

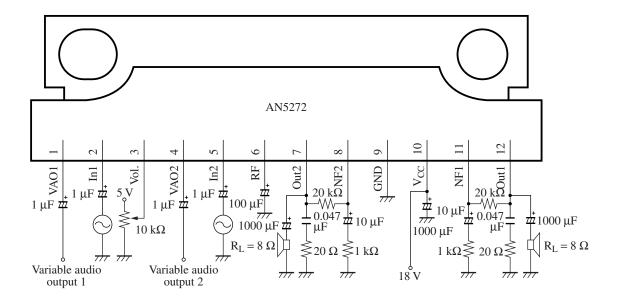
Parameter	Symbol	Rating	Unit	
Supply voltage	V _{CC}	30	V	
Supply current	I _{CC}	3.5	A	
Power dissipation *2	P_{D}	37.5	W	
Operating ambient temperature *1	T _{opr}	-25 to +75	°C	
Storage temperature *1	T_{stg}	-55 to +150	°C	

Note) *1: $T_a = 25$ °C except power dissipation, operating ambient temperature and storage temperature.

■ Recommended Operating Range

Parameter	Symbol	Range	Unit	
Supply voltage	V _{CC}	12.2 to 27.5	V	

\blacksquare Electrical Characteristics at V_{CC} = 18 V, f = 1 kHz, R_L = 8 $\Omega,\,T_a$ = 25 °C

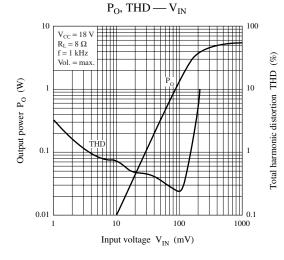

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Quiescent current	I_{CQ}	No input signal	17	25	33	mA
Voltage gain	G_{V}	$V_{IN} = 90 \text{ mV}$	28	30	32	dB
Total harmonic distortion *1	THD	$V_{IN} = 90 \text{ mV}$		0.3	1.0	%
Output power *1	Po	THD = 10 %	3.6	4.1		W
Channel balance	СВ	$V_{IN} = 90 \text{ mV}$	-1	0	1	dB
Max. volume attenuation *1	Att	$V_{IN} = 90 \text{ mV}$		-70	-64	dB
VAO voltage gain	G _{VAO}	$V_{IN} = 90 \text{ mV}$	10	12	14	dB
Output noise voltage *1	V _{NO}	$R_g = 10 \text{ k}\Omega$, Din-Audio Filter		0.6	1.0	mV[rms]

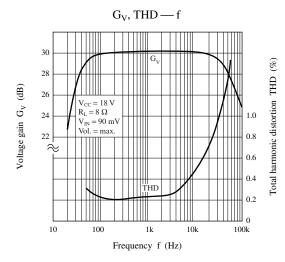
Note) *1: With a filter band from 20 Hz to 20 kHz used.

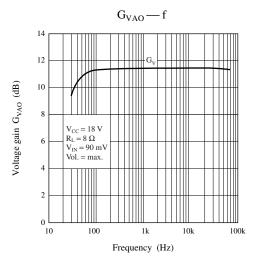
2 Panasonic

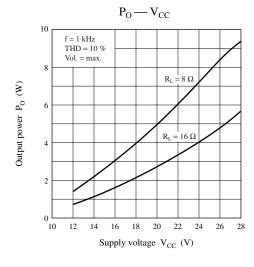
^{*2:} Power dissipation of the package at $T_a = 75$ °C.

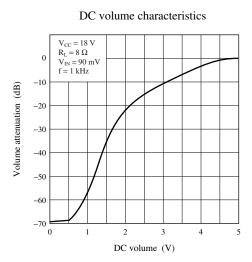
■ Application Circuit Example

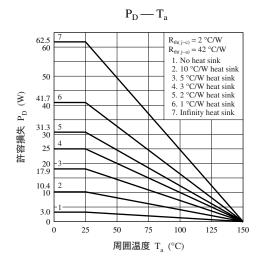


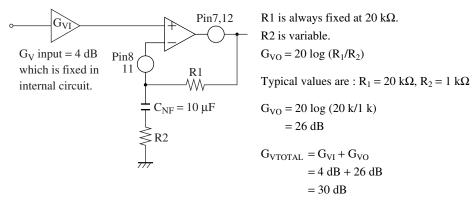

■ Usage Notes


- 1) Depending on the maximum application output power, external heatsink may be needed. External heatsink should be fixed to the chassis.
- 2) Fin of the IC can be connected to GND.
- 3) Please prevent output to V_{CC} short and output to GND short.
- 4) The temperature protection circuit will operate at T_j around 150 °C. However, if the temperature decreases, the protection circuit would automatically be deactivated and resume normal operation.


■ Technical Information

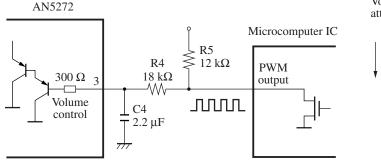

1. Characteristic Curve Chart





■ Technical Information (continued)

2. Application Note


1) Voltage gain

The voltage gain of the AN5272 can be varied by changing the resistor R2 as shown below:

2) DC volume control

The DC volume control range is 0 V to 5 V. This range is used in order to be easily controlled by micro-computer using PWM output. The recommended circuit and volume attenuation characteristic are shown below:

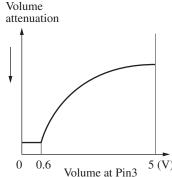
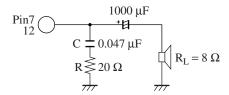
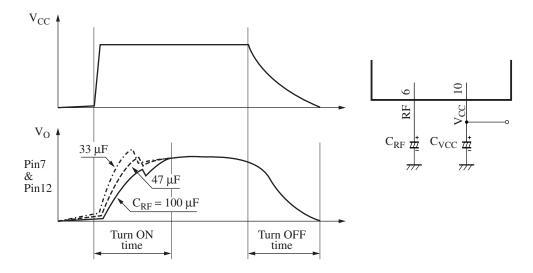



Fig. Volume characteristic of AN5272

3) Oscillation

To prevent oscillation, it is advisable to use RC (Zobel network) at output. C of polyester film capacitor has smaller characteristic fluctuation with temperature and frequency. The resistor R connected in series with C is effective for phase correction at high frequency, and as a result, it improves the oscillation allowance.


Panasonic 5

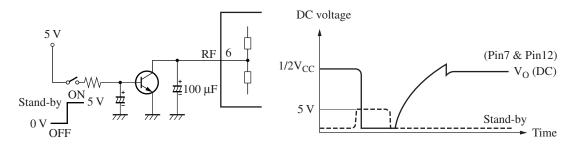
■ Technical Information (continued)

2. Application Note (continued)

4) Power-ON/OFF pop-noise elimination

The output pins 7, 12 and $V_{\rm O}$, during power turn ON and OFF are shown below :

The turn ON time in the AN5272 is determined by the capacitance value of C_{RF} . If value of the C_{RF} is smaller, V_{O} would turn ON faster.


The turn OFF time is dependent on the capacitance value of C_{VCC} . Pop-noise would occur when V_{CC} voltage declines faster than RF voltage. To solve this, increase the discharge time of V_{CC} by increasing the capacitance values of C_{VCC} .

The recommended values of capacitance for C_{VCC} and C_{RF} are shown below :

No.	C _{RF}	C _{VCC}	Recommended Operating V _{CC} Range	Unit
1	33 µF	470 μF	14.5 to 27.5	V
2	47 μF	470 μF	12.2 to 27.5	V
3	100 μF	1000 μF	12.2 to 27.5	V

5) Stand-by circuit

Stand-by function can be implemented in the AN5272 by external solution. It is realised by pulling the RF voltage to low and output voltage would follow RF as shown in the diagram.

6 Panasonic