# imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



## Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



| Regulations No.:        |                         |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Total Page                   | es Page |
|-------------------------|-------------------------|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|---------|
|                         | IC3F5089                |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 15                           | 1       |
|                         |                         |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                              |         |
|                         |                         |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                              |         |
|                         |                         |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                              |         |
|                         |                         |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                              |         |
|                         |                         |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                              |         |
|                         | <b>D</b>                |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                              |         |
|                         |                         | luct S                                     | Stand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ards                         |         |
|                         |                         |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                              |         |
|                         | Part No.                |                                            | AN8016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SH-A                         |         |
|                         | De che en Ocal          |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                              |         |
|                         | Package Code            | 3 NO.                                      | SSOP010-F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2-0225A                      |         |
|                         |                         |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                              |         |
|                         |                         |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                              |         |
|                         |                         |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                              |         |
|                         |                         |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                              |         |
|                         |                         |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                              |         |
|                         |                         |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                              |         |
|                         |                         |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                              |         |
|                         |                         |                                            | <b>B</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                              |         |
|                         |                         | _                                          | Business Ur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              |         |
|                         |                         | Semiconduc                                 | tor Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ,                            |         |
|                         |                         | Semiconduc                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ,                            |         |
|                         |                         | Semiconduc                                 | tor Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ,                            |         |
|                         | Matsu                   | Semiconduc<br>shita Electric               | etor Company<br>c Industrial Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ,<br>o., Ltd.                |         |
|                         | Matsu                   | Semiconduc<br>shita Electric               | etor Company<br>c Industrial Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ,<br>o., Ltd.                |         |
|                         | Matsu<br>Established by | Semiconduc<br>shita Electric<br>Applied by | tor Company<br>Industrial Control | ,<br>o., Ltd.<br>Prepared by |         |
|                         | Matsu<br>Established by | Semiconduc<br>shita Electric<br>Applied by | tor Company<br>Industrial Control | ,<br>o., Ltd.<br>Prepared by |         |
|                         | Matsu<br>Established by | Semiconduc<br>shita Electric<br>Applied by | tor Company<br>Industrial Control | ,<br>o., Ltd.<br>Prepared by |         |
|                         | Matsu<br>Established by | Semiconduc<br>shita Electric<br>Applied by | tor Company<br>Industrial Control | ,<br>o., Ltd.<br>Prepared by | -       |
| 007-11-15<br>stablished | Matsu<br>Established by | Semiconduc<br>shita Electric<br>Applied by | tor Company<br>Industrial Control | ,<br>o., Ltd.<br>Prepared by |         |

Page

2

Total Pages

15

## Contents

| Overview                                                 | 3  |
|----------------------------------------------------------|----|
| ■ Features                                               | 3  |
| Applications                                             | 3  |
| Package                                                  | 3  |
| ■ Туре                                                   | 3  |
| Application Circuit Example                              | 4  |
| Block Diagram                                            | 5  |
| Pin Descriptions                                         | 6  |
| Absolute Maximum Ratings                                 | 7  |
| Operating Supply Voltage Range                           | 7  |
| Recommended Operating Conditions                         | 7  |
| Electrical Characteristics                               | 8  |
| Electrical Characteristics (Reference values for design) | 9  |
| ■ Test Circuit Diagram                                   | 10 |
| Electrical Characteristics Test Procedures               | 12 |
| Technical Data                                           | 15 |

| 2007-11-15      |         |                                                                 |
|-----------------|---------|-----------------------------------------------------------------|
| Established     | Revised |                                                                 |
| 218016S00207110 |         | Semiconductor Company, Matsushita Electric Industrial Co., Ltd. |

### AN8016SH-A

## AN8016SH-A

## Single-channel 1.8-volt step-up DC-DC converter control IC

#### Overview

AN8016SH-A is a single-channel PWM DC-DC converter control IC that supports low-voltage operation.

This IC allows a stepped-up voltage output to be provided with a minimal number of external components. It features a low minimum operating voltage of 1.8 V, and due to being provided in a 10 pin surface mount package with a 0.5 mm lead pitch, is optimal for use in miniature high-efficiency power supplies for portable equipment.

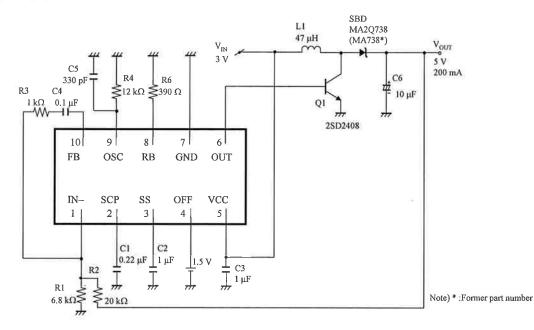
### Features

- Wide operating supply voltage range : 1.8 V to 14 V
- High-precision reference voltage circuit : 1.27 V (allowance : ±3%)
- Supports control over a wide output frequency range : 20 kHz to 1 MHz
- Provides a fixed output current with minimal supply voltage fluctuations by using an external resistor to set the output current with a totem pole structure in the output block.
- Large maximum output current of ±50 mA
- Timer latch short-circuit protection circuit (charge current : 1.3 µA typical)
- Low input voltage malfunction prevention circuit (U.V.L.O.) (circuit operation start voltage : 1.6 V typical)
- On/off control function (active-high, standby current : 5 µA maximum)
- $\bullet$  Fixed maximum duty ratio with small sample-to sample variations (80%  $\pm 5\%$ )
- Adjustable soft start time provided by using separate DTC and S.C.P. pins.

#### Applications

• LCD displays, digital still cameras, PDAs

#### Package


- 10 pin Plastic Shrink Small Outline Package (SSOP Type)
- Туре
  - Silicon monolithic bipolar IC

| 2007-11-15      |         |                                                                 |
|-----------------|---------|-----------------------------------------------------------------|
| Established     | Revised |                                                                 |
| 218016S00307110 |         | Semiconductor Company, Matsushita Electric Industrial Co., Ltd. |

|                   | AN8016SH-A  |      |
|-------------------|-------------|------|
| Product Standards | Total Pages | Page |
|                   | 15          | 4    |

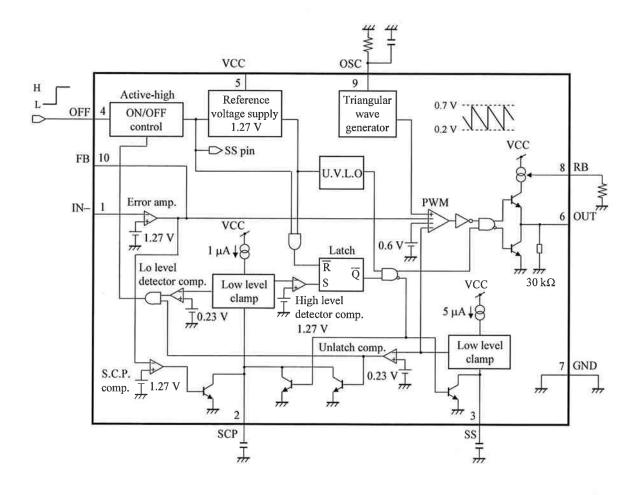
#### Application Circuit Example

Chopper Type Step-up Circuit



Notes) When you design printed circuit board pattern layout, consider the following in order to achieve low noise and high efficiency.

- 1. Use extremely wide lines for the ground lines, and isolate the IC ground from the power system ground.
- 2. Position the input filter capacitor C3 as close as possible to the  $V_{cc}$  pin and the GND pin so that the internal circuit of the IC will not be affected by the switching noise.
- The wiring length between the OUT pin and the switching elements (i.e., transistor and MOSFET) must be as short as possible in order to obtain fine switching waveforms.
- 4. The lead wire on the low impedance side of the output voltage detecting resistor R2 must be longer than the other side.


| 2007-11-15      |         |                                                                 |
|-----------------|---------|-----------------------------------------------------------------|
| Established     | Revised |                                                                 |
| 218016S00407110 |         | Semiconductor Company, Matsushita Electric Industrial Co., Ltd. |

## AN8016SH-A

5

Total Pages Page 15

Block Diagram



| 2007-11-15      |         |                                                                 |
|-----------------|---------|-----------------------------------------------------------------|
| Established     | Revised |                                                                 |
| 218016S00507110 |         | Semiconductor Company, Matsushita Electric Industrial Co., Ltd. |

|  | Product Standards | AN8016SH-A  |      |
|--|-------------------|-------------|------|
|  |                   | Total Pages | Page |
|  |                   | 15          | 6    |

### Pin Descriptions

| Pin No. | Pin name | Туре         | Description                                                     |  |
|---------|----------|--------------|-----------------------------------------------------------------|--|
| 1       | IN–      | Input        | Error amplifier inverting input                                 |  |
| 2       | SCP      |              | Time constant capacitor connection for short-circuit protection |  |
| 3       | SS       | -            | Soft-start time-constant capacitor connection                   |  |
| 4       | OFF      | Input        | ON/off control                                                  |  |
| 5       | VCC      | Power supply | Supply voltage                                                  |  |
| 6       | OUT      | Output       | Push-pull output                                                |  |
| 7       | GND      | Ground       | Ground                                                          |  |
| 8       | RB       | Output       | Output-current setting resistor connection pin                  |  |
| 9       | OSC      |              | Oscillator circuit timing resistor/capacitor connection pin     |  |
| 10      | FB       | Output       | Error amplifier output                                          |  |

3

| 2007-11-15      |         |                                                                 |
|-----------------|---------|-----------------------------------------------------------------|
| Established     | Revised |                                                                 |
| 218016S00607110 |         | Semiconductor Company, Matsushita Electric Industrial Co., Ltd. |

|  | Product Standards | AN8016SH-A  |      |
|--|-------------------|-------------|------|
|  |                   | Total Pages | Page |
|  |                   | 15          | 7    |

#### Absolute Maximum Ratings

| A<br>No. | Parameter                             | Symbol               | Rating          | Unit | Notes            |
|----------|---------------------------------------|----------------------|-----------------|------|------------------|
| 1        | Supply voltage                        | V <sub>cc</sub>      | 15              | V    | *1               |
| 2        | Supply current                        | I <sub>CC</sub>      |                 | mA   |                  |
| 3        | Power dissipation                     | P <sub>D</sub>       | 186             | mW   | *2               |
| 4        | Operating ambient temperature         | T <sub>opr</sub>     | -30 to +85      | °C   | *3               |
| 5        | Storage temperature                   | T <sub>stg</sub>     | -55 to +150     | °C   | *3               |
| 6        | OFF pin allowable application voltage | V <sub>OFF</sub>     | 15              | V    | ~                |
| 7        | IN- pin allowable application voltage | V <sub>IN-</sub>     | V <sub>cc</sub> | V    |                  |
| 8 -      | OUT pin allowable application voltage | V <sub>OUT</sub>     | 15              | V    |                  |
| 9        | Output source current                 | I <sub>SO(OUT)</sub> | -50             | mA   | ( <del></del> -) |
| 10       | Output sink current                   | I <sub>SI(OUT)</sub> | +50             | mA   |                  |

Notes)\*1: The values under the condition not exceeding the above absolute maximum ratings and the power dissipation.

\*2: The power dissipation shown is the value at  $T_a = 85^{\circ}C$  for the independent (unmounted) IC package.

When using this IC, refer to the P<sub>D</sub>-T<sub>a</sub> diagram of the package standard page 4 and use under the condition not exceeding the allowable value. \*3: Except for the power dissipation, operating ambient temperature, and storage temperature, all ratings are for T<sub>a</sub> = 25°C.

#### Operating supply voltage range

| Parameter            | Symbol          | Range     | Unit | Notes |
|----------------------|-----------------|-----------|------|-------|
| Supply voltage range | V <sub>cc</sub> | 1.8 to 14 | v    | *     |

Note) \*: The values under the condition not exceeding the above absolute maximum ratings and the power dissipation,

### Recommended Operating Conditions

| Parameter                                                  | Symbol               | min   | max    | Unit | Notes |
|------------------------------------------------------------|----------------------|-------|--------|------|-------|
| OFF control pin voltage                                    | V <sub>OFF</sub>     | 0     | 14     | v    | *     |
| Output source current                                      | I <sub>SO(OUT)</sub> | -40   |        | mA   | *     |
| Output sink current                                        | I <sub>SI(OUT)</sub> |       | 40     | mA   | *     |
| Timing resistance                                          | R <sub>T</sub>       | 3     | 30     | kΩ   | *     |
| Timing capacitance                                         | CT                   | 100   | 10 000 | pF   | *     |
| Oscillator frequency                                       | f <sub>OUT</sub>     | 20    | 1 000  | kHz  | *     |
| Short-circuit protection time constant setting capacitance | C <sub>SCP</sub>     | 1 000 |        | pF   | *     |
| Output current setting resistance                          | R <sub>B</sub>       | 180   | 1 100  | Ω    | *     |

Note) \*: Do not apply current or voltage from external source to any pin not listed above.

In the circuit current, (+) means the current flowing into IC and (-) means the current flowing out of IC.

| 2007-11-15      |         |                                                                        |
|-----------------|---------|------------------------------------------------------------------------|
| Established     | Revised |                                                                        |
| 218016500707110 |         | Consistent durates Commences Materialities Electric Industrial Co. 144 |

218016S00707110

AN8016SH-A

Total Pages 15

Page 8

■ Electrical Characteristics at V<sub>CC</sub> = 2.4 V Note) T<sub>a</sub> = 25°C±2°C unless otherwise specified.

| в    | Doromatar                          | Queshal               | Test     | Conditions                                                   |       | Limits   |        | 11-34                       | N-1     |
|------|------------------------------------|-----------------------|----------|--------------------------------------------------------------|-------|----------|--------|-----------------------------|---------|
| No.  | Parameter                          | Symbol                | circuits | Conditions                                                   | Min   | Тур      | Max    | Unit                        | Note    |
| U.V. | L.O Block                          |                       |          |                                                              |       |          |        |                             |         |
| 1    | Circuit operation start voltage    | VUON                  | 1        |                                                              | 1.45  | 1.6      | 1.75   | V                           | _       |
| Erro | r Amplifier Block                  |                       |          |                                                              |       |          |        |                             |         |
| 2    | Input threshold voltage            | V <sub>TH</sub>       | 1        | Voltage follower                                             | 1.23  | 1.27     | 1.31   | ν.                          | -       |
| 3    | Line regulation                    | V <sub>dV</sub>       | 1        | $V_{CC} = 1.8 V$ to 14 V                                     | -     | 1.0      | 10     | mV                          | -       |
| 4    | Input bias current                 | IB                    | 2        | _                                                            | -     | 0.2      | 1.0    | μA                          | -       |
| 5    | High-level output voltage          | V <sub>EH</sub>       | 2        |                                                              | 1.85  | 2.0      | 2.15   | v                           |         |
| 6    | Low-level output voltage           | V <sub>EL</sub>       | 2        | -                                                            | —     |          | 0.2    | V                           | -       |
| PW   | I Comparator Block                 |                       |          |                                                              |       |          |        |                             |         |
| 7    | Output source current              | I <sub>SS</sub>       | 5        | $V_{SS} = 0.5 V$                                             | -3.5  | -5       | -6.5   | μΑ                          | -       |
| Outp | out Block                          |                       |          |                                                              |       |          |        |                             |         |
| 8    | Oscillator frequency               | fout                  | 3        | $R_{\rm T} = 12 \text{ k}\Omega, C_{\rm T} = 330 \text{ pF}$ | 170   | 190      | 210    | kHz                         | -       |
| 9    | Maximum duty                       | D <sub>MAX</sub>      | 3        |                                                              | 75    | 80       | 85     | %                           | -       |
| 10   | High-level output voltage          | V <sub>OH</sub>       | 4        | $I_0 = -15 \text{ mA}, R_B = 390 \Omega$                     | 1.4   | -        | -      | V                           | -       |
| 11   | Low-level output voltage           | V <sub>OL</sub>       | 4        | $I_0 = 10 \text{ mA}, R_B = 390 \Omega$                      |       | -        | 0.2    | V                           | · —     |
| 12   | Output source current              | I <sub>SO(OUT)</sub>  | 4        | $V_0 = 0.9 \text{ V}, R_B = 390 \Omega$                      | -40   | -30      | -20    | mA                          | V=      |
| 13   | Output sink current                | I <sub>SI(OUT)</sub>  | 4        | $V_0 = 0.3 V, R_B = 390 \Omega$                              | 20    | <u> </u> | -      | mA                          | 2       |
| 14   | Pull-down resistor                 | Ro                    | 4        |                                                              | 20    | 30       | 40     | kΩ                          | (       |
| Unla | tch Circuit Block                  |                       |          |                                                              |       |          |        |                             |         |
| 15   | Input threshold voltage            | V <sub>THUL</sub>     | 5        | i and                                                        | 0.13  | 0.20     | 0.27   | $\mathbf{V}^{\mathrm{res}}$ | -       |
| Shor | t-circuit Protection Circuit Block |                       | <        |                                                              |       |          |        |                             |         |
| 16   | Input threshold voltage            | VTHPC                 | 6        |                                                              | 1.17  | 1.27     | 1.37   | V                           | -       |
| 17   | Input standby voltage              | V <sub>STBY</sub>     | 6        | -                                                            | -     | 60       | 120    | mV                          | -       |
| 18   | Input latch voltage                | VIN                   | 6        | -                                                            |       | 40       | 120    | mV                          | :       |
| 19   | Charge current                     | I <sub>CHG</sub>      | 5        | $V_{SCP} = 0.5 V$                                            | -1.65 | -1.3     | - 0.95 | μA                          |         |
| ON/  | OFF Control Block                  |                       |          |                                                              |       |          |        |                             |         |
| 20   | Input threshold voltage            | V <sub>ON(TH)</sub>   | 7        | _                                                            | 0.8   | 1.0      | 1.3    | v                           | <u></u> |
| 21   | OFF mode SS pin voltage            | V <sub>OFF(SS)</sub>  | 7        | -                                                            | 0.13  | -        | 0.27   | V                           | -       |
| 22   | OFF mode S.C.P. pin voltage        | V <sub>OFF(SCP)</sub> | 7        | _                                                            | 0.13  | -        | 0.27   | V                           | -       |
| Who  | le Device                          |                       |          |                                                              |       |          | · I    |                             |         |
| 23   | Average consumption current        | I <sub>CC(AV)</sub>   | 1        | $R_{\rm B}$ = 390 Ω, Duty ratio = 50%                        | -     | 4.4      | 7.0    | mA                          | _       |
| 24   | Latch mode consumption current     | I <sub>CC(LA)</sub>   | 1        | $R_{\rm B} = 390 \ \Omega$                                   | -     | 1.5      | 2.4    | mA                          | -       |
| 25   | Standby mode current               | I <sub>CC(SB)</sub>   | 1        | _                                                            |       |          | 5      | μA                          | -       |

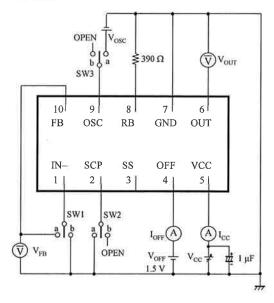
| 2007-11-15      |         |                                                           |
|-----------------|---------|-----------------------------------------------------------|
| Established     | Revised |                                                           |
| 218016500807110 |         | Semiconductor Company, Mateuchita Electric Inductrial Co. |

|  | Product Standards | AN801       | 6SH-A |
|--|-------------------|-------------|-------|
|  |                   | Total Pages | Page  |
|  |                   | 15          | 9     |

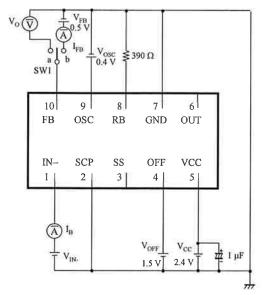
## Electrical Characteristics (Reference values for design) at $V_{CC} = 2.4 \text{ V}$

Note)  $T_a = 25^{\circ}C \pm 2^{\circ}C$  unless otherwise specified.

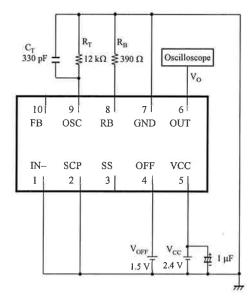
| в    | Deservation                                         | ,<br>Ormhal         | Test          |                                       | Reference values |      |            | Unit | Malas |
|------|-----------------------------------------------------|---------------------|---------------|---------------------------------------|------------------|------|------------|------|-------|
| No.  | Parameter                                           | Symbol              | circuits      | Conditions                            | Min              | Тур  | Max        |      | Notes |
| U.V. | L.O Block                                           |                     |               |                                       |                  |      |            |      |       |
| 26   | Reset voltage                                       | V <sub>R</sub>      | . <del></del> | 8 <del>777</del> 8                    | 3 <del></del>    | 0.8  |            | V    | *1    |
| Erro | r Amplifier Block                                   |                     |               |                                       |                  |      |            |      |       |
| 27   | V <sub>TH</sub> temperature characteristics         | V <sub>THdT</sub>   | 2             | $T_a = -40^{\circ}C$ to $85^{\circ}C$ | 100              | ±0.5 | -          | %    | *1    |
| 28   | Output source current                               | I <sub>SO(FB)</sub> | 2             | V <sub>FB</sub> = 0.5 V               |                  | -40  | -          | μA   | *1    |
| 29   | Output sink current                                 | I <sub>SI(FB)</sub> | 2             | V <sub>FB</sub> = 0.5 V               |                  | 2    | 2 <b>.</b> | mA   | *1    |
| 30   | Open-loop gain                                      | A <sub>V</sub>      | 2             | —                                     |                  | 70   | ::         | dB   | *1    |
| PW   | M Comparator Block                                  |                     |               |                                       |                  |      |            |      |       |
| 31   | SS pin voltage                                      | V <sub>SS</sub>     | 5             |                                       |                  | 1.22 |            | v    | *1    |
| Outp | out Block                                           |                     |               |                                       |                  |      |            |      |       |
| 32   | RB pin voltage                                      | V <sub>RB</sub>     | 5             | $R_{\rm B} = 390 \ \Omega$            | -                | 0.32 | -          | v    | *1    |
| 33   | Oscillator frequency supply voltage characteristics | $f_{dV}$            | 3             | $V_{CC} = 1.8 V$ to 14 V              | -                | ±1   | -          | %    | *1    |
| 34   | Oscillator frequency temperature characteristics    | f <sub>dT</sub>     | 3             | $T_a = -30^{\circ}C$ to $85^{\circ}C$ | -                | ±3   | -          | %    | *1    |
| Shoi | rt-circuit Protection Circuit Block                 |                     |               |                                       |                  |      |            |      |       |
| 35   | Comparator threshold voltage                        | V <sub>THL</sub>    | 6             |                                       |                  | 1.27 |            | V    | *1    |
| ON/  | OFF Control Block                                   |                     |               |                                       |                  |      |            |      |       |
| 36   | ON/OFF pin current                                  | I <sub>OFF</sub>    | 1             | V <sub>OFF</sub> = 1.5 V              |                  | 23   | -          | μA   | *1    |


Note) \*1: The above characteristics are reference values for design of the IC and are not guaranteed by inspection. If a problem does occur related to these characteristics, Matsushita will respond in good faith to user concerns.

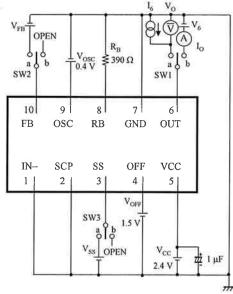
| 2007-11-15      | ×       |                                                                 |
|-----------------|---------|-----------------------------------------------------------------|
| Established     | Revised |                                                                 |
| 218016S00907110 |         | Semiconductor Company, Matsushita Electric Industrial Co., Ltd. |


|                   | AN801       | 6SH-A |
|-------------------|-------------|-------|
| Product Standards | Total Pages | Page  |
|                   | 15          | 10    |

### Test Circuit Diagram


1. Test Circuit 1

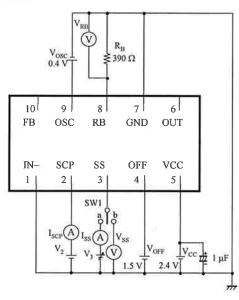


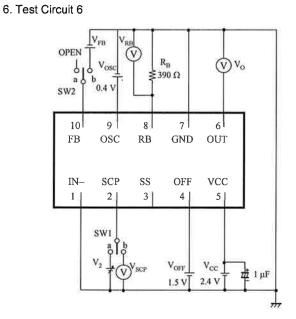




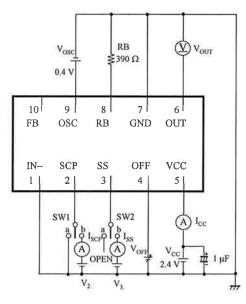

#### 3. Test Circuit 3




4. Test Circuit 4




| 2007-11-15      |         |                                                                |
|-----------------|---------|----------------------------------------------------------------|
| Established     | Revised |                                                                |
| 218016S01007110 |         | Semiconductor Company, Matsushita Electric Industrial Co., Ltd |


|  | Product Standards | AN8016SH-A  |      |  |
|--|-------------------|-------------|------|--|
|  |                   | Total Pages | Page |  |
|  |                   | 15          | 11   |  |

- Test Circuit Diagram (continued)
  - 5. Test Circuit 5





7. Test Circuit 7



| 2007-11-15      |         |                                                                 |
|-----------------|---------|-----------------------------------------------------------------|
| Established     | Revised |                                                                 |
| 218016S01107110 |         | Semiconductor Company, Matsushita Electric Industrial Co., Ltd. |

## AN8016SH-A

15

Total Pages Page 12

### Electrical Characteristics Test Procedures

1. Test Circuit 1

| С   | Parameter                       | SW |   |   | Conditions                                                                                                                                                                                                                                                                                                                       | Maggurgement                                                                                                                                                                                                                                                                   |  |
|-----|---------------------------------|----|---|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| No. | Farameter                       | 1  | 2 | 3 | Conditions                                                                                                                                                                                                                                                                                                                       | Measurement                                                                                                                                                                                                                                                                    |  |
| 1   | Circuit operation start voltage | b  | а | a | $ \begin{array}{l} V_{CC} = \text{variable},  V_{OFF} = 1.5  \text{V}, \\ V_{OSC} = 0.4  \text{V} \end{array} \end{array} \begin{array}{l} \text{Measure the } V_{CC}  \text{voltage when the } V_{OUT} \\ \text{changes from Low to High level while} \\ \text{increasing the } V_{CC}  \text{voltage gradually}. \end{array} $ |                                                                                                                                                                                                                                                                                |  |
| 2   | Input threshold voltage         | a  | а | a | $V_{CC} = 2.4 \text{ V}, V_{OFF} = 1.5 \text{ V},$<br>$V_{OSC} = 0.4 \text{ V}$                                                                                                                                                                                                                                                  | Measure the voltage of $V_{FB}$ .                                                                                                                                                                                                                                              |  |
| 3   | Line regulation                 | a  | a | a | $V_{CC}$ = variable, $V_{OFF}$ = 1.5 V,<br>$V_{OSC}$ = 0.4 V                                                                                                                                                                                                                                                                     | Measure $V_{dv}$ which is the amount of change in $V_{FB}$ when changing $V_{CC}$ from 1.8 V to 14 V.                                                                                                                                                                          |  |
| 23  | Average consumption current     | b  | a | a | $V_{CC} = 2.4 \text{ V}, V_{OFF} = 1.5 \text{ V},$<br>$V_{OSC} = \text{variable}$                                                                                                                                                                                                                                                | $ \begin{array}{l} \mbox{Measure } I_{CC} = I_{CC} 1 \mbox{ at } V_{OSC} = 0.8 \mbox{ V and } I_{CC} = \\ I_{CC} 2 \mbox{ at } V_{OSC} = 0.4 \mbox{ V. And then, calculate the} \\ \mbox{equation ; } I_{CC} (AV) = (I_{CC} 1 + I_{CC} 2) \mbox{ / } 2 \mbox{ .} \end{array} $ |  |
| 36  | ON/OFF pin current              | b  | a | a | $V_{CC} = 2.4 V, V_{OFF} = 1.5 V,$<br>$V_{OSC} = 0.4 V$                                                                                                                                                                                                                                                                          | Measure the current of $\mathrm{I}_{\mathrm{OFF}}$ .                                                                                                                                                                                                                           |  |
| 24  | Latch mode consumption current  | b  | b | b | $V_{CC} = 2.4 \text{ V}, V_{OFF} = 1.5 \text{ V}$                                                                                                                                                                                                                                                                                | Measure the current of $I_{\rm CC}$ .                                                                                                                                                                                                                                          |  |
| 25  | Standby mode current            | b  | b | b | $V_{CC} = 2.4 \text{ V}, V_{OFF} = 0 \text{ V}$                                                                                                                                                                                                                                                                                  | Measure the current of I <sub>CC</sub> .                                                                                                                                                                                                                                       |  |

### 2. Test Circuit 2

| С   | Deservator                | SW | Conditions                                                                                                                  | Manual                                                                                                          |  |
|-----|---------------------------|----|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--|
| No. | Parameter                 | 1  | Conditions                                                                                                                  | Measurement                                                                                                     |  |
| 4   | Input bias current        | a  | $V_{CC} = 2.4 V, V_{OFF} = 1.5 V, V_{IN-} = 1.5 V, V_{OSC} = 0.4 V$                                                         | Measure the current of I <sub>B</sub> .                                                                         |  |
| 5   | High-level output voltage | a  | $V_{CC} = 2.4 \text{ V}, V_{OFF} = 1.5 \text{ V},$<br>$V_{IN-} = 1.0 \text{ V}, V_{OSC} = 0.4 \text{ V}$                    | Measure the voltage of V <sub>0</sub> .                                                                         |  |
| 6   | Low-level output voltage  | a  | $V_{CC} = 2.4 \text{ V}, V_{OFF} = 1.5 \text{ V}, V_{IN-} = 1.5 \text{ V}, V_{OSC} = 0.4 \text{ V}$                         | Measure the voltage of V <sub>0</sub> .                                                                         |  |
| 28  | Output source current     | b  |                                                                                                                             | Measure the current of $\mathrm{I}_{\mathrm{FB}}$ .                                                             |  |
| 29  | Output sink current       | b  | $V_{CC} = 2.4 \text{ V}, V_{OFF} = 1.5 \text{ V}, V_{IN-} = 1.5 \text{ V}, V_{OSC} = 0.4 \text{ V}, V_{FB} = 0.5 \text{ V}$ | Measure the current of $I_{\rm FB}$ .                                                                           |  |
| 30  | Open-loop gain            | а  | $V_{CC} = 2.4 \text{ V}, V_{OFF} = 1.5 \text{ V},$<br>$V_{IN-} = \text{variable}, V_{OSC} = 0.4 \text{ V}$                  | $A_{V} = 20\log_{10} \frac{V_{EH} - V_{EL}}{\Delta V_{IN-}} [dB]$ $V_{O}$ $V_{EH}$ $V_{EL}$ $V_{IN-}$ $V_{IN-}$ |  |

| 2007-11-15      |         |                                                                |
|-----------------|---------|----------------------------------------------------------------|
| Established     | Revised |                                                                |
| 218016S01207110 |         | Semiconductor Company, Matsushita Electric Industrial Co., Ltd |

|                   | AN8016SH-A  |      |  |
|-------------------|-------------|------|--|
| Product Standards | Total Pages | Page |  |
|                   | 15          | 13   |  |

## Electrical Characteristics Test Procedures (continued)

### 3. Test Circuit 3

| C<br>No. | Parameter            | Conditions                                        | Measurement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------|----------------------|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8        | Oscillator frequency | V <sub>CC</sub> = 2.4 V, V <sub>OFF</sub> = 1.5 V | Oscilloscope waveform<br>$V_0$<br>1.7 V<br>0.1 V<br>ton<br>T<br>ton<br>T<br>ton<br>T<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton<br>ton |
| 9        | Maximum duty         | $V_{CC} = 2.4 \text{ V}, V_{OFF} = 1.5 \text{ V}$ | $D_{MAX} = \frac{tON}{T} \times 100  [\%]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

### 4. Test Circuit 4

| С   | Parameter                 |   | sw   |   | Candiliana                                                                                                                        | Management                              |  |
|-----|---------------------------|---|------|---|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--|
| No. | Parameter                 | 1 | 2    | 3 | Conditions                                                                                                                        | Measurement                             |  |
| 10  | High-level output voltage | a | a    | b | $V_{CC} = 2.4 V, V_{OFF} = 1.5 V,$<br>$V_{OSC} = 0.4 V, V_{FB} = 0.5 V,$<br>$I_6 = -15 mA$                                        | Measure the voltage of $V_0$ .          |  |
| 11  | Low-level output voltage  | а | а    | b | $V_{CC} = 2.4 \text{ V}, V_{OFF} = 1.5 \text{ V},$<br>$V_{OSC} = 0.4 \text{ V}, V_{FB} = 0.3 \text{ V},$<br>$I_6 = 10 \text{ mA}$ | Measure the voltage of $V_0$ .          |  |
| 12  | Output source current     | b | b    | a |                                                                                                                                   | Measure the current of I <sub>0</sub> . |  |
| 13  | Output sink current       | b | b    | a | $V_{CC} = 2.4 V, V_{OFF} = 1.5 V,$<br>$V_{OSC} = 0.4 V, V_{SS} = 0.3 V,$<br>$V_6 = 0.3 V$                                         | Measure the current of I <sub>0</sub> . |  |
| 14  | Pull-down resistor        | b | 2-17 |   | V <sub>6</sub> = 0.3 V                                                                                                            | $R_0 = \frac{0.3}{I_0}$                 |  |

| -11-15       |         |                                                    |
|--------------|---------|----------------------------------------------------|
| stablished   | Revised |                                                    |
| 016501307110 |         | Somiconductor Company, Matauabita Electric Inducto |

218016S01307110

## AN8016SH-A

Total Pages 15

Page 14

### Electrical Characteristics Test Procedures (continued)

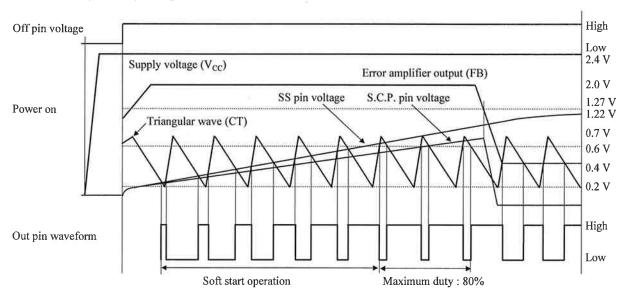
## 5. Test Circuit 5

| C<br>No. | Parameter               | SW<br>1 | Conditions Measurement                                                                                     |                                                                                                                                              |
|----------|-------------------------|---------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| 7        | Output source current   | а       | $V_{CC} = 2.4 V, V_{OFF} = 1.5 V,$<br>$V_{OSC} = 0.4 V, V_2 = V_3 = 0.5 V$                                 | Measure the current of I <sub>SS</sub> .                                                                                                     |
| 19       | Charge current          | a       | $V_{CC} = 2.4 \text{ V}, V_{OFF} = 1.5 \text{ V},$<br>$V_{OSC} = 0.4 \text{ V}, V_2 = V_3 = 0.5 \text{ V}$ | Measure the current of $\mathrm{I}_{\mathrm{SCP}}$ .                                                                                         |
| 15       | Input threshold voltage | a       | $V_{CC} = 2.4 V, V_{OFF} = 1.5 V,$<br>$V_{OSC} = 0.4 V, V_2 = 0.5 V,$<br>$V_3 = variable$                  | Measure the $V_3$ voltage when the $I_{SCP}$ changes<br>from sink current to source current while<br>increasing the $V_3$ voltage gradually. |
| 31       | SS pin voltage          | b       | $V_{CC} = 2.4 \text{ V}, V_{OFF} = 1.5 \text{ V},$<br>$V_{OSC} = 0.4 \text{ V}, V_2 = 0 \text{ V}$         | Measure the voltage of $V_{SS}$ .                                                                                                            |
| 32       | RB pin voltage          | b       | $V_{CC} = 2.4 \text{ V}, V_{OFF} = 1.5 \text{ V},$<br>$V_{OSC} = 0.4 \text{ V}, V_2 = 0 \text{ V}$         | Measure the voltage of $V_{RB}$ .                                                                                                            |

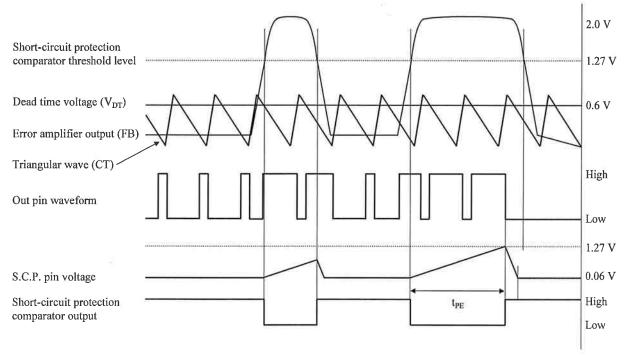
### 6. Test Circuit 6

| С   | Parameter                    | SW |   | Conditions                                                                                             | Measurement                                                                                                                       |  |
|-----|------------------------------|----|---|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--|
| No. | Falameter                    | 1  | 2 | Conditions                                                                                             | Measurement                                                                                                                       |  |
| 16  | Input threshold voltage      | а  | а | $V_{CC} = 2.4 \text{ V}, V_{OFF} = 1.5 \text{ V},$<br>$V_{OSC} = 0.4 \text{ V}, V_2 = \text{variable}$ | Measure the $V_2$ voltage when the $V_0$ changes<br>from High to Low level while increasing the $V_2$<br>voltage gradually.       |  |
| 17  | Input standby voltage        | b  | b | $V_{CC} = 2.4 \text{ V}, V_{OFF} = 1.5 \text{ V}, V_{OSC} = 0.4 \text{ V}, V_{FB} = 0.5 \text{ V}$     | Confirm that $V_{RB}$ is 0.2 V or more. Then measure $V_{SCP}$                                                                    |  |
| 18  | Input latch voltage          | b  | a | $V_{CC} = 2.4 \text{ V}, V_{OFF} = 1.5 \text{ V},$<br>$V_{OSC} = 0.4 \text{ V}$                        | Confirm that $V_{RB}$ is 0.2 V or less. Then measure $V_{SCP}$                                                                    |  |
| 35  | Comparator threshold voltage | b  | ь | $V_{CC} = 2.4 \text{ V}, V_{OFF} = 1.5 \text{ V},$ $V_{OSC} = 0.4 \text{ V}, V_{FB} = \text{variable}$ | Measure the $V_{FB}$ voltage when the $V_O$ changes<br>from High to Low level while increasing the<br>$V_{FB}$ voltage gradually. |  |

### 7. Test Circuit 7


| С   | Demenden                    | SW |   | Quaditiana                                                                        |                                                                                                                                                                                                                       |  |
|-----|-----------------------------|----|---|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| No. | Parameter                   | 1  | 2 | Conditions                                                                        | Measurement                                                                                                                                                                                                           |  |
| 20  | Input threshold voltage     | а  | а | $V_{CC} = 2.4 \text{ V}, V_{OSC} = 0.4 \text{ V},$<br>$V_{OFF} = \text{variable}$ | Measure the $V_{OFF}$ voltage when the $V_{OUT}$ changes from Low to High level while increasing the $V_{OFF}$ voltage gradually.                                                                                     |  |
| 21  | OFF mode SS pin voltage     | b  | b | $V_{CC} = 2.4 V, V_{OSC} = 0.4 V,$<br>$V_{OFF} = 1.5 V, V_2 = V_3 = 0.3 V$        | Confirm that sink current flows to $I_{SCP}$ and $I_{SS}$ when decreasing $V_{OFF}$ from 1.5 V to 0 V. Then, set $V_2$ to 0 V, decreasing $V_3$ gradually, and measure $V_3 = V_{OFF(SS)}$ at $I_{CC} = 0$ .          |  |
| 22  | OFF mode S.C.P. pin voltage | b  | b | $V_{CC} = 2.4 V, V_{OSC} = 0.4 V,$<br>$V_{OFF} = 1.5 V, V_2 = V_3 = 0.3 V$        | Confirm that sink current flows to $I_{SCP}$ and $I_{SS}$<br>when decreasing $V_{OFF}$ from 1.5 V to 0 V. Then,<br>set $V_3$ to 0 V, decreasing $V_2$ gradually, and<br>measure $V_3 = V_{OFF(SS)}$ at $I_{CC} = 0$ . |  |

| 2007-11-15      |         |                                                                 |
|-----------------|---------|-----------------------------------------------------------------|
| Established     | Revised |                                                                 |
| 218016S01407110 |         | Semiconductor Company, Matsushita Electric Industrial Co., Ltd. |


| Due du et Oten de ade | AN8016SH-A  |      |  |
|-----------------------|-------------|------|--|
| Product Standards     | Total Pages | Page |  |
|                       | 15          | 15   |  |

#### Technical Data

- Timing charts (internal waveforms)
- 1. PWM comparator operating waveforms

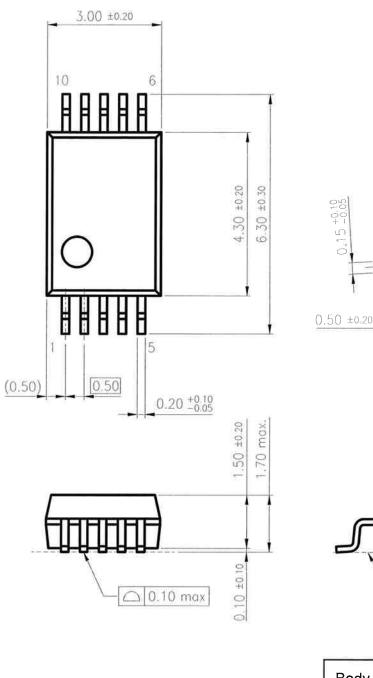


2. Short-circuit protection operating waveforms



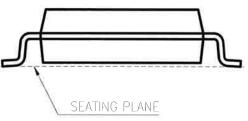
1

| 2007-11-15      |         |                                                                 |
|-----------------|---------|-----------------------------------------------------------------|
| Established     | Revised |                                                                 |
| 218016S01507110 |         | Semiconductor Company, Matsushita Electric Industrial Co., Ltd. |


| Regulations No. : SC3 | S1383         |            |                                  | Total Page  |   |
|-----------------------|---------------|------------|----------------------------------|-------------|---|
|                       | ]             |            |                                  | 5           | 1 |
|                       |               |            |                                  |             |   |
| Ρ                     | ACK           | AGE S      | STAND                            | ARDS        |   |
| Pa                    | Package Code  |            | SSOP010-F                        | 9-0225A     |   |
|                       |               |            |                                  |             |   |
|                       |               |            |                                  |             |   |
|                       |               |            |                                  |             |   |
|                       | Mate          |            | tor Company<br>: Industrial Co., | Ltd.        |   |
| E                     | stablished by | Applied by | Checked by                       | Prepared by |   |
|                       | K.Komichi     | H.Yoshida  | M.Okajima                        | K.Kametaka  |   |
|                       |               |            |                                  |             |   |
|                       |               |            |                                  |             |   |

9.**\*** 

## PACKAGE STANDARDS SSOP010-P-0225A

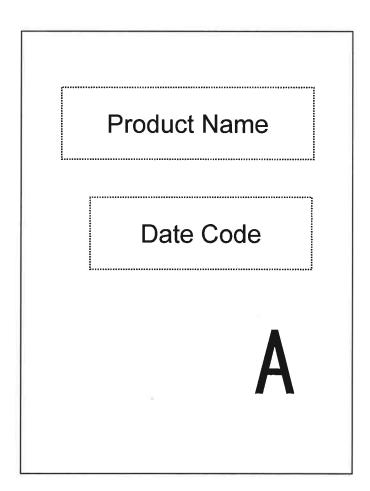

Total PagesPage52

## 1. Outline Drawing



Unit:mm

(1.00)

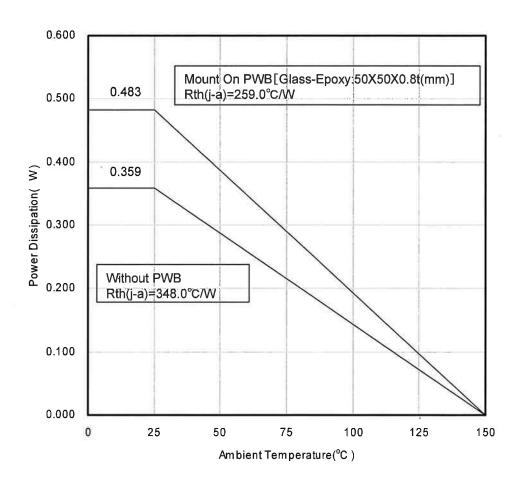



0° to 10°

|                              | Body Material :      | Epoxy resin  |  |  |
|------------------------------|----------------------|--------------|--|--|
|                              | Lead Material :      | Cu Alloy     |  |  |
|                              | Lead Finish Method : | SnBi Plating |  |  |
| Exclusive use for AN8016SH-A |                      |              |  |  |

|                 | PACKAGE STANDARDS |             |      |
|-----------------|-------------------|-------------|------|
|                 |                   | Total Pages | Page |
| SSOP010-P-0225A | 5                 | 3           |      |

2. Mark Drawing




Exclusive use for AN8016SH-A

## PACKAGE STANDARDS SSOP010-P-0225A

Total PagesPage54

## 3. Power Dissipation (Technical Report)



Exclusive use for AN8016SH-A

## PACKAGE STANDARDS

SSOP010-P-0225A

| Total Pages | Page |
|-------------|------|
| 5           | 5    |

### 4. Power Dissipation (Supplementary Explanation)

#### [Experiment environment]

Power Dissipation (Technical Report) is a result in the experiment environment of SEMI standard conformity. (Ambient air temperature (Ta) is 25 degrees C)

#### [Supplementary information of PWB to be used for measurement]

The supplement of PWB information for Power Dissipation data (Technical Report) are shown below.

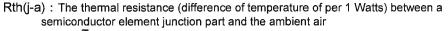
| Indication  | Total Layer | Resin Material |
|-------------|-------------|----------------|
| Glass-Epoxy | 1-layer     | FR-4           |
| 4-layer     | 4-layer     | FR-4           |

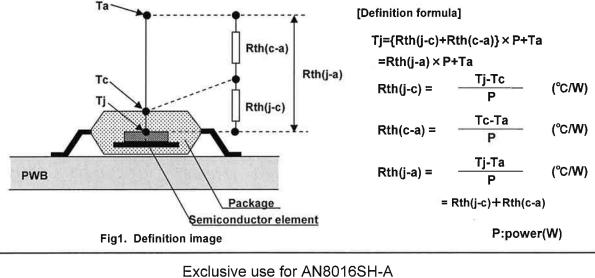
#### [Notes about Power Dissipation (Thermal Resistance)]

Power Dissipation values (Thermal Resistance) depend on the conditions of the surroundings, such as specification of PWB and a mounting condition, and a ambient temperature. (Power Dissipation (Thermal Resistance) is not a fixed value.)

The Power Dissipation value (Technical Report) is the experiment result in specific conditions (evaluation environment of SEMI standard conformity), and keep in mind that Power Dissipation values (Thermal resistance) depend on circumference conditions and also change.

#### [Definition of each temperature and thermal resistance]


Ta : Ambient air temperature


**%**The temperature of the air is defined at the position where the convection, radiation, etc. don't affect the temperature value, and it's separated from the heating elements.

- Tc : It's the temperature near the center of a package surface. The package surface is defined at the opposite side if the PWB.
- Tj : Semiconductor element surface temperature (Junction temperature.)

Rth(j-c) : The thermal resistance (difference of temperature of per 1 Watts) between a semiconductor element junction part and the package surface

Rth(c-a) : The thermal resistance (difference of temperature of per 1 Watts) between the package surface and the ambient air



