: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Electrical Characteristics ($\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
STATIC PARAMETERS						
BV ${ }_{\text {DSS }}$	Drain-Source Breakdown Voltage	$\mathrm{I}_{\mathrm{D}}=-250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	-30			V
ISs	Zero Gate Voltage Drain Current	$\mathrm{V}_{\mathrm{DS}}=-30 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$			-1	$\mu \mathrm{A}$
		$\mathrm{T}_{\mathrm{J}}=55^{\circ} \mathrm{C}$			-5	
IGSS	Gate-Body leakage current	$\mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}= \pm 25 \mathrm{~V}$			± 100	nA
$\mathrm{V}_{\mathrm{GS}(\text { (th) }}$	Gate Threshold Voltage	$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}} \mathrm{I}_{\mathrm{D}}=-250 \mu \mathrm{~A}$	-1.7	-2.3	-2.8	V
$\mathrm{I}_{\mathrm{D}(\mathrm{ON})}$	On state drain current	$\mathrm{V}_{\mathrm{GS}}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=-5 \mathrm{~V}$	-50			A
$\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$	Static Drain-Source On-Resistance	$\mathrm{V}_{\mathrm{GS}}=-20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-9 \mathrm{~A}$		10	15	$\mathrm{m} \Omega$
		$\mathrm{V}_{\mathrm{GS}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-8 \mathrm{~A}$		12	18	$\mathrm{m} \Omega$
		$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$		13	20	
		$\mathrm{V}_{\mathrm{GS}}=-4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-5 \mathrm{~A}$		29		$\mathrm{m} \Omega$
g_{FS}	Forward Transconductance	$\mathrm{V}_{\text {DS }}=-5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-9 \mathrm{~A}$		27		S
$\mathrm{V}_{\text {SD }}$	Diode Forward Voltage	$\mathrm{I}_{\mathrm{S}}=-1 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$		-0.7	-1	V
$\mathrm{I}^{\text {S }}$	Maximum Body-Diode Continuous Current				-2.5	A
DYNAMIC PARAMETERS						
$\mathrm{C}_{\text {iss }}$	Input Capacitance	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$		2060	2600	pF
$\mathrm{C}_{\text {oss }}$	Output Capacitance			370		pF
$\mathrm{C}_{\text {rss }}$	Reverse Transfer Capacitance			295		pF
R_{g}	Gate resistance	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	1.2	2.4	3.6	Ω
SWITCHING PARAMETERS						
Q_{g}	Total Gate Charge	$\mathrm{V}_{\mathrm{GS}}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-9 \mathrm{~A}$		30	39	nC
Q_{gs}				4.6		nC
Q_{gd}	Gate Drain Charge			10		nC
$\mathrm{t}_{\mathrm{D} \text { (on) }}$	Turn-On DelayTime	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1.67 \Omega, \\ & \mathrm{R}_{\mathrm{GEN}}=3 \Omega \end{aligned}$		11		ns
t_{r}	Turn-On Rise Time			9.4		ns
$\mathrm{t}_{\text {(offit }}$	Turn-Off DelayTime			24		ns
t_{f}	Turn-Off Fall Time			12		ns
t_{rr}	Body Diode Reverse Recovery Time			30	40	ns
Q_{rr}	Body Diode Reverse Recovery Charge	$\mathrm{I}_{\mathrm{F}}=-9 \mathrm{~A}, \mathrm{dl} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}$		22		nC

A. The value of $R_{\theta J A}$ is measured with the device mounted on $1 \mathrm{in}^{2}$ FR-4 board with 2 oz . Copper, in a still air environment with $T_{A}=25^{\circ} C$. The value in any given application depends on the user's specific board design.
B. The power dissipation P_{D} is based on $T_{J M A X)}=150^{\circ} \mathrm{C}$, using $\leqslant 10$ s junction-to-ambient thermal resistance.
C. Repetitive rating, pulse width limited by junction temperature $\mathrm{T}_{\mathrm{J}(\mathrm{MAX)}}=150^{\circ} \mathrm{C}$. Ratings are based on low frequency and duty cycles to keep initialT ${ }_{J}=25^{\circ}$ C.
D. The $R_{\text {өJA }}$ is the sum of the thermal impedence from junction to lead $R_{\text {өJL }}$ and lead to ambient.
E. The static characteristics in Figures 1 to 6 are obtained using $<300 \mu$ s pulses, duty cycle 0.5% max.
F. These curves are based on the junction-to-ambient thermal impedence which is measured with the device mounted on $1 \mathrm{in}^{2}$ FR-4 board with 2oz. Copper, assuming a maximum junction temperature of $\mathrm{T}_{\mathrm{JMAX})}=150^{\circ} \mathrm{C}$. The SOA curve provides a single pulse rating.

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Fig 1: On-Region Characteristics (Note E)

Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E)

Figure 5: On-Resistance vs. Gate-Source Voltage (Note E)

Figure 2: Transfer Characteristics (Note E)

Figure 4: On-Resistance vs. Junction Temperature (Note E)

Figure 6: Body-Diode Characteristics (Note E)

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 12: Normalized Maximum Transient Thermal Impedance (Note F)

Gate Charge Test Circuit \& Waveform

Resistive Switching Test Circuit \& Waveforms

Diode Recovery Test Circuit \& Waveforms

