

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

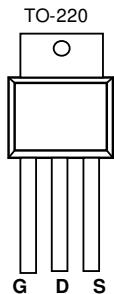
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

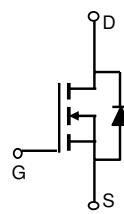
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

ALPHA & OMEGA
SEMICONDUCTOR

AOT430 N-Channel Enhancement Mode Field Effect Transistor


General Description

The AOT430 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. This device is suitable for use in PWM, load switching and general purpose applications. *Standard Product AOT430 is Pb-free (meets ROHS & Sony 259 specifications).*


Features

$V_{DS} (V) = 75V$
 $I_D = 80 A$ ($V_{GS} = 10V$)
 $R_{DS(ON)} < 11.5m\Omega$ ($V_{GS} = 10V$)

UIS TESTED!

Top View
Drain Connected
to Tab

Absolute Maximum Ratings $T_A=25^\circ C$ unless otherwise noted

Parameter	Symbol	Maximum	Units
Drain-Source Voltage	V_{DS}	75	V
Gate-Source Voltage	V_{GS}	± 25	V
Continuous Drain Current ^A	I_D	80	A
$T_C=100^\circ C$		78	
Pulsed Drain Current ^C	I_{DM}	200	
Avalanche Current ^C	I_{AR}	45	A
Repetitive avalanche energy $L=0.3mH$ ^C	E_{AR}	300	mJ
Power Dissipation ^B	P_D	268	W
$T_C=25^\circ C$		134	
Junction and Storage Temperature Range	T_J, T_{STG}	-55 to 175	°C

Thermal Characteristics

Parameter	Symbol	Typ	Max	Units
Maximum Junction-to-Ambient ^A	Steady-State	$R_{\theta JA}$	45	°C/W
Maximum Junction-to-Case ^B	Steady-State	$R_{\theta JC}$	0.45	°C/W

Electrical Characteristics ($T_J=25^\circ\text{C}$ unless otherwise noted)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
STATIC PARAMETERS						
BV_{DSS}	Drain-Source Breakdown Voltage	$I_D=250\mu\text{A}, V_{\text{GS}}=0\text{V}$	75			V
I_{DSS}	Zero Gate Voltage Drain Current	$V_{\text{DS}}=60\text{V}, V_{\text{GS}}=0\text{V}$		1		μA
			$T_J=55^\circ\text{C}$		5	
I_{GSS}	Gate-Body leakage current	$V_{\text{DS}}=0\text{V}, V_{\text{GS}}=\pm 25\text{V}$			1	μA
$V_{\text{GS}(\text{th})}$	Gate Threshold Voltage	$V_{\text{DS}}=V_{\text{GS}}, I_D=250\mu\text{A}$	2	2.7	4	V
$I_{\text{D}(\text{ON})}$	On state drain current	$V_{\text{GS}}=10\text{V}, V_{\text{DS}}=5\text{V}$	200			A
$R_{\text{DS}(\text{ON})}$	Static Drain-Source On-Resistance	$V_{\text{GS}}=10\text{V}, I_D=30\text{A}$		9.8	11.5	$\text{m}\Omega$
			$T_J=125^\circ\text{C}$		16.0	
g_{FS}	Transconductance	$V_{\text{DS}}=5\text{V}, I_D=80\text{A}$		90		S
V_{SD}	Diode Forward Voltage	$I_S=1\text{A}, V_{\text{GS}}=0\text{V}$		0.7	1	V
I_S	Maximum Body-Diode Continuous Current ^G				80	A
DYNAMIC PARAMETERS						
C_{iss}	Input Capacitance	$V_{\text{GS}}=0\text{V}, V_{\text{DS}}=30\text{V}, f=1\text{MHz}$		4700		pF
C_{oss}	Output Capacitance			400		pF
C_{rss}	Reverse Transfer Capacitance			180		pF
R_g	Gate resistance	$V_{\text{GS}}=0\text{V}, V_{\text{DS}}=0\text{V}, f=1\text{MHz}$		3		Ω
SWITCHING PARAMETERS						
$Q_g(10\text{V})$	Total Gate Charge	$V_{\text{GS}}=10\text{V}, V_{\text{DS}}=30\text{V}, I_D=30\text{A}$		114		nC
Q_{gs}	Gate Source Charge			33		nC
Q_{gd}	Gate Drain Charge			18		nC
$t_{\text{D}(\text{on})}$	Turn-On Delay Time	$V_{\text{GS}}=10\text{V}, V_{\text{DS}}=30\text{V}, R_L=1\Omega, R_{\text{GEN}}=3\Omega$		21		ns
t_r	Turn-On Rise Time			39		ns
$t_{\text{D}(\text{off})}$	Turn-Off Delay Time			70		ns
t_f	Turn-Off Fall Time			24		ns
t_{rr}	Body Diode Reverse Recovery Time	$I_F=30\text{A}, dI/dt=100\text{A}/\mu\text{s}$		53		ns
Q_{rr}	Body Diode Reverse Recovery Charge	$I_F=30\text{A}, dI/dt=100\text{A}/\mu\text{s}$		143		nC

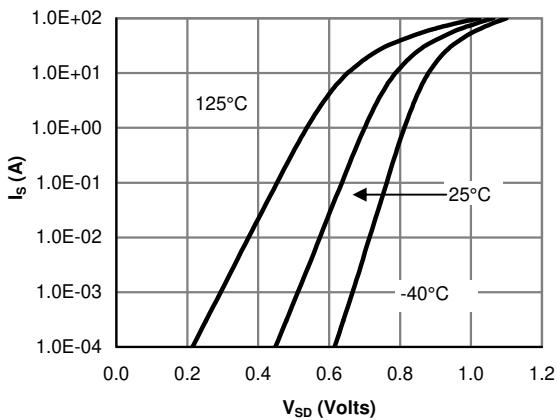
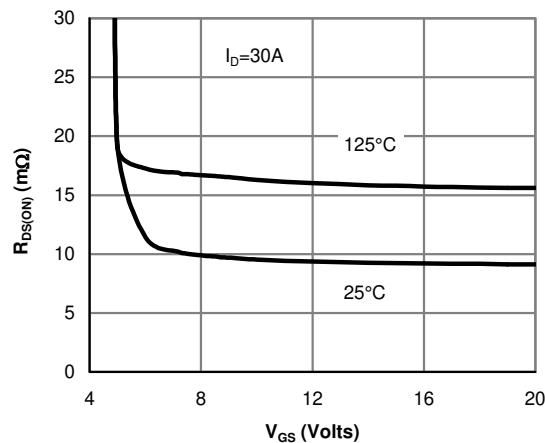
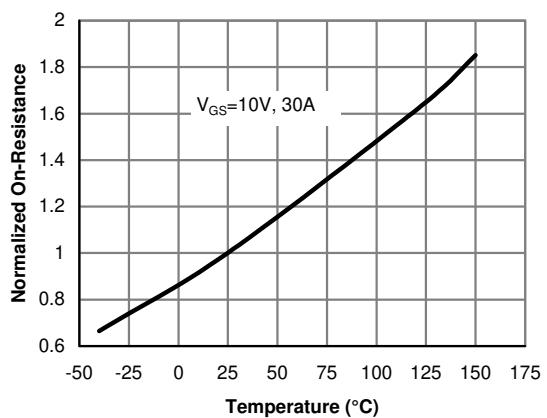
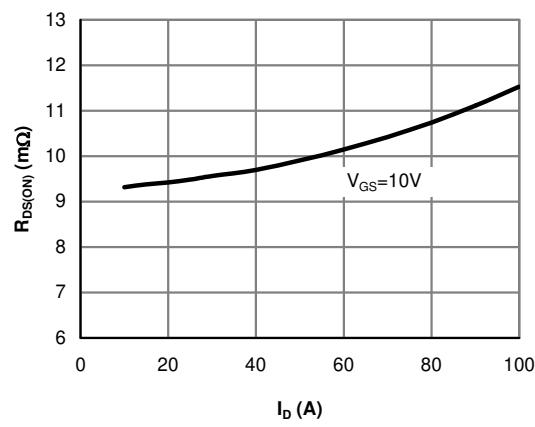
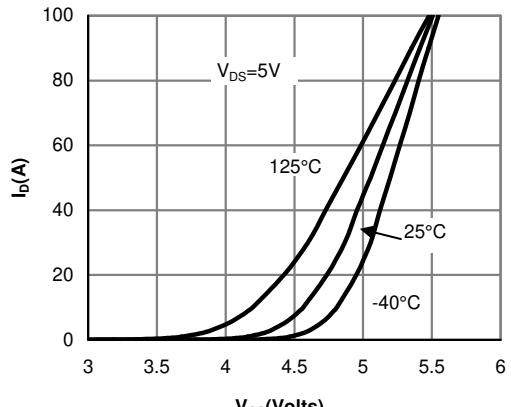
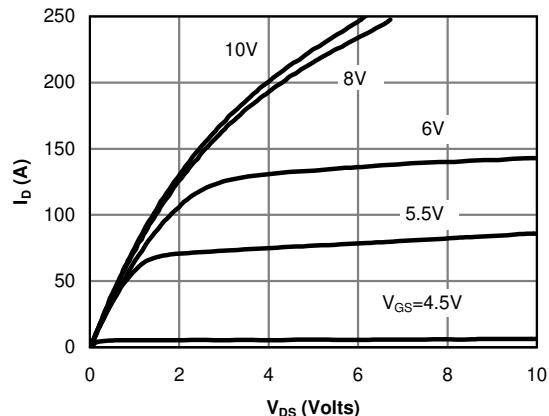
A: The value of R_{JJA} is measured with the device in a still air environment with $T_A=25^\circ\text{C}$.

B. The power dissipation P_D is based on $T_{\text{J}(\text{MAX})}=175^\circ\text{C}$, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.

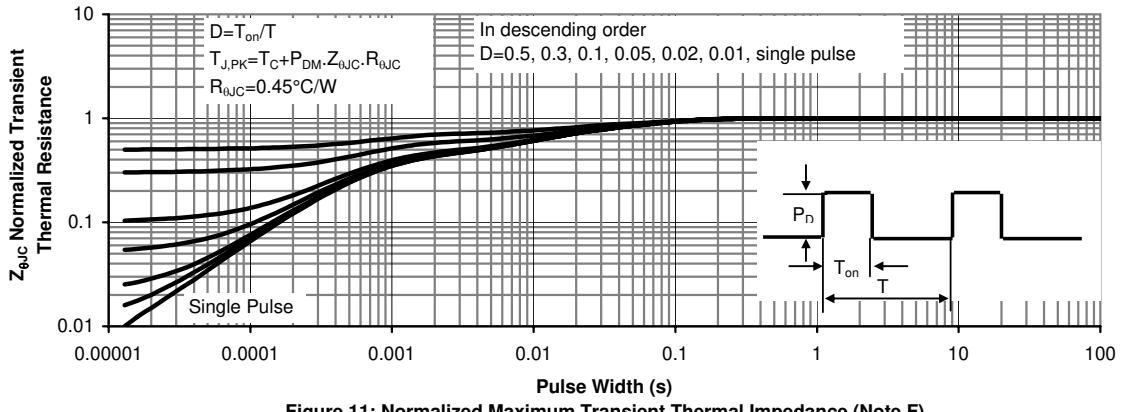
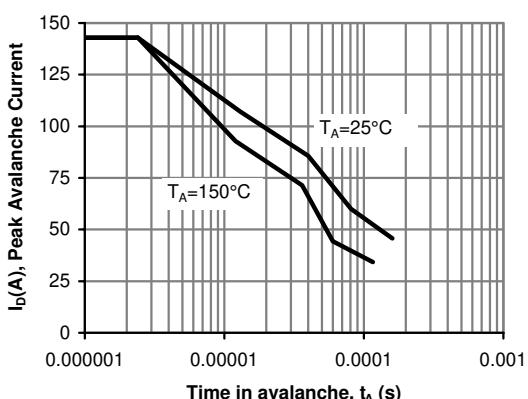
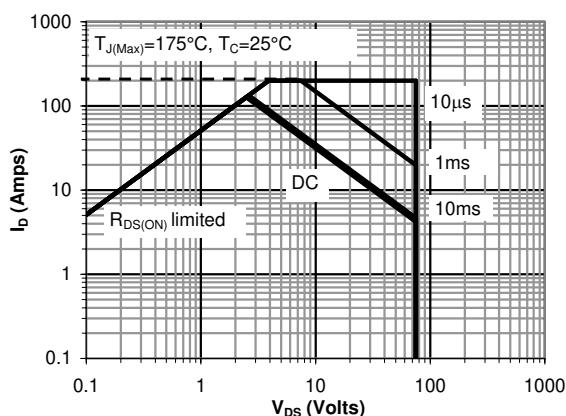
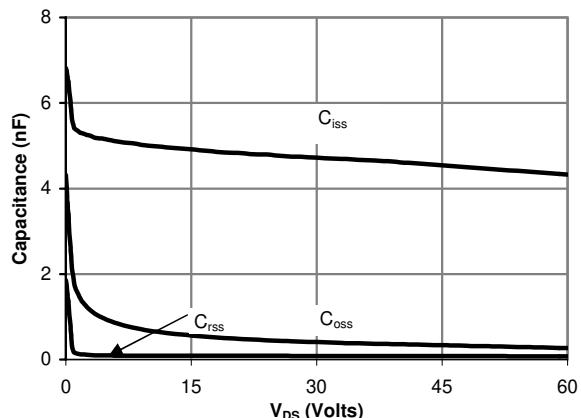
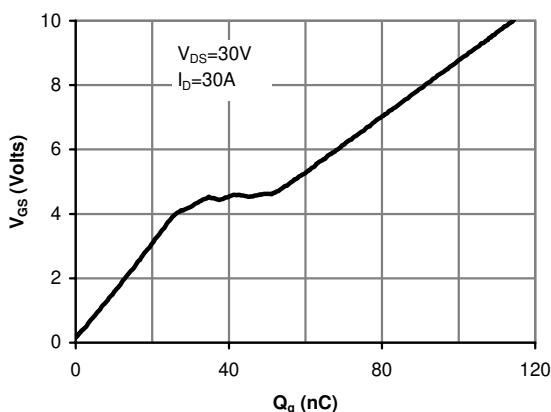
C: Repetitive rating, pulse width limited by junction temperature $T_{\text{J}(\text{MAX})}=175^\circ\text{C}$.

D. The R_{JJA} is the sum of the thermal impedance from junction to case R_{JJC} and case to ambient.

E. The static characteristics in Figures 1 to 6 are obtained using $<300\ \mu\text{s}$ pulses, duty cycle 0.5% max.







F. These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of $T_{\text{J}(\text{MAX})}=175^\circ\text{C}$.

G. The maximum current rating is limited by bond-wires.






Rev2: Feb 2007

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

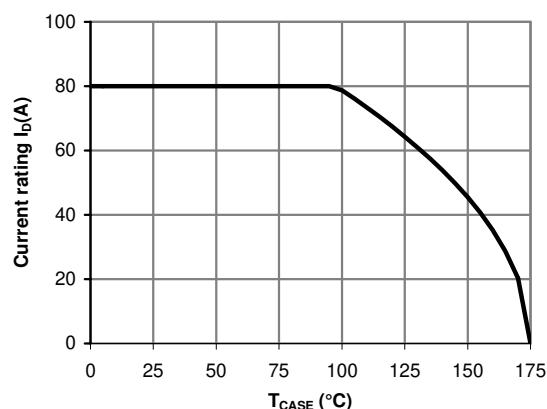


Figure 12: Current De-rating (Note B)

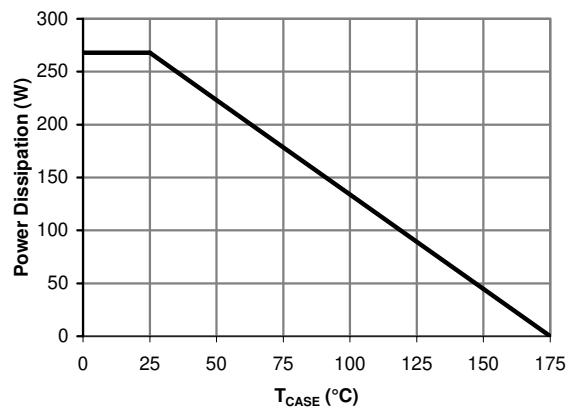


Figure 13: Power De-rating (Note B)