imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

AOTF6N90 900V,6A N-Channel MOSFET

General Description			Product Summary					
The AOTF6N90 is fabricated using an advanced high voltage MOSFET process that is designed to deliver high levels of performance and robustness in popular AC-DC applications.By providing low R _{DS(on)} , C _{iss} and C _{rss} along with guaranteed avalanche capability this parts can be adopted quickly into new and existing offline power supply designs. For Halogen Free add "L" suffix to part number: AOTF6N90L			V_{DS} I_D (at V_{GS} =10V) $R_{DS(ON)}$ (at V_{GS} =10V)	1000V@150℃ 6A < 2.2Ω				
			100% UIS Tested 100% R _g Tested RoH					
1	Cop View							
TO-220F								
AOTF6N90 $_{G}$ $_{D}$ $_{S}$ $_{AOTF6N90}$ $_{G}$ $_{S}$ Absolute Maximum Ratings T _A =25°C unless otherwise noted								
		s otherwise no	oted					
Parameter	Ratings T _A =25℃ unles		AOTF6N90	Units				
		s otherwise no Symbol V _{DS}		Units V				
Parameter		Symbol	AOTF6N90					
Parameter Drain-Source Voltage		Symbol V _{DS} V _{GS}	AOTF6N90 900	V				
Parameter Drain-Source Voltage Gate-Source Voltage		Symbol V _{DS}	AOTF6N90 900 ±30	V				
Parameter Drain-Source Voltage Gate-Source Voltage Continuous Drain Current Pulsed Drain Current	T _c =25℃ T _c =100℃	Symbol V _{DS} V _{GS}	AOTF6N90 900 ±30 6*	V V V				
Parameter Drain-Source Voltage Gate-Source Voltage Continuous Drain Current Pulsed Drain Current Avalanche Current ^C	T _c =25℃ T _c =100℃ c	Symbol V _{DS} V _{GS} I _D I _{DM} I _{AR}	AOTF6N90 900 ±30 6* 3.9*	V V V				
Parameter Drain-Source Voltage Gate-Source Voltage Continuous Drain Current Pulsed Drain Current Avalanche Current ^C Repetitive avalanche	T _C =25°C T _C =100°C c	Symbol V _{DS} V _{GS} I _D I _{DM} I _{AR} E _{AR}	AOTF6N90 900 ±30 6* 3.9* 24	V V A				
Parameter Drain-Source Voltage Gate-Source Voltage Continuous Drain Current Pulsed Drain Current Avalanche Current ^C Repetitive avalanche Single plused avalance	$T_{c}=25^{\circ}C$ $T_{c}=100^{\circ}C$ energy ^C the energy ^G	Symbol V _{DS} V _{GS} 	AOTF6N90 900 ±30 6* 3.9* 24 3.3 80 160	V V A A MJ MJ MJ				
Parameter Drain-Source Voltage Gate-Source Voltage Continuous Drain Current Pulsed Drain Current Avalanche Current ^C Repetitive avalanche	$T_{c}=25^{\circ}C$ $T_{c}=100^{\circ}C$ c energy ^C the energy ^G dv/dt	Symbol V _{DS} V _{GS} I _D I _{DM} I _{AR} E _{AR}	AOTF6N90 900 ±30 6* 3.9* 24 3.3 80 160 5	V V A A MJ MJ V/ns				
Parameter Drain-Source Voltage Gate-Source Voltage Continuous Drain Current Pulsed Drain Current Avalanche Current ^C Repetitive avalanche Single plused avalance Peak diode recovery of	$T_{c}=25^{\circ}C$ $T_{c}=100^{\circ}C$ $T_{c}=100^{\circ}C$ $T_{c}=100^{\circ}C$ $T_{c}=10^{\circ}C$ $T_{c}=10^{\circ}C$	Symbol V _{DS} V _{GS} 	AOTF6N90 900 ±30 6* 3.9* 24 3.3 80 160 5 5 50	V V A A MJ MJ W/ns W				
Parameter Drain-Source Voltage Gate-Source Voltage Continuous Drain Current Pulsed Drain Current Avalanche Current ^C Repetitive avalanche Single plused avalance Peak diode recovery of Power Dissipation ^B	$T_{c}=25^{\circ}C$ $T_{c}=100^{\circ}C$ energy ^C the energy ^G dv/dt $T_{c}=25^{\circ}C$ Derate above 25 ^o C	Symbol V _{DS} V _{GS} I _D I _{DM} I _{AR} E _{AR} E _{AS} dv/dt P _D	AOTF6N90 900 ±30 6* 3.9* 24 3.3 80 160 5 50 0.4	V V A A M A M M M V/ns V/ns W V/°C				
Parameter Drain-Source Voltage Gate-Source Voltage Continuous Drain Current Pulsed Drain Current Avalanche Current ^C Repetitive avalanche Single plused avalance Peak diode recovery of Power Dissipation ^B Junction and Storage	$T_{c}=25^{\circ}C$ $T_{c}=100^{\circ}C$ energy ^C the energy ^G dv/dt $T_{c}=25^{\circ}C$ Derate above 25°C Temperature Range	$\begin{tabular}{ c c c c } \hline Symbol & V_{DS} & V_{GS} & \\ \hline V_{GS} & & \\ \hline I_D & & \\ I_{DM} & & \\ I_{AR} & & \\ E_{AR} & & \\ E_{AS} & & \\ dv/dt & & \\ \hline P_D & & \\ T_J, T_{STG} & & \\ \hline \end{tabular}$	AOTF6N90 900 ±30 6* 3.9* 24 3.3 80 160 5 5 50	V V A A MJ MJ W/ns W				
Parameter Drain-Source Voltage Gate-Source Voltage Continuous Drain Current Pulsed Drain Current Avalanche Current ^C Repetitive avalanche Single plused avalance Peak diode recovery of Power Dissipation ^B Junction and Storage Maximum lead tempe purpose, 1/8" from ca	$T_{c}=25^{\circ}C$ $T_{c}=100^{\circ}C$ c energy ^C the energy ^G dv/dt $T_{c}=25^{\circ}C$ Derate above 25 ^o C Temperature Range rature for soldering se for 5 seconds	Symbol V _{DS} V _{GS} I _D I _{DM} I _{AR} E _{AR} E _{AS} dv/dt P _D	AOTF6N90 900 ±30 6* 3.9* 24 3.3 80 160 5 50 0.4	V V A A M A M M M V/ns V/ns W V/°C				
Parameter Drain-Source Voltage Gate-Source Voltage Continuous Drain Current Pulsed Drain Current Avalanche Current ^C Repetitive avalanche Single plused avalance Peak diode recovery of Power Dissipation ^B Junction and Storage Maximum lead tempe purpose, 1/8" from ca Thermal Characteris	$\begin{array}{c} T_{c}=25^{\circ}C\\ T_{c}=100^{\circ}C\\ c\\ \end{array}$ energy ^C the energy ^G dv/dt $\begin{array}{c} T_{c}=25^{\circ}C\\ \end{array}$ Derate above 25 ^o C Temperature Range rature for soldering se for 5 seconds tics	$\begin{tabular}{ c c c c } \hline Symbol & V_{DS} & V_{GS} & \\ \hline V_{GS} & & I_D & \\ \hline I_{DM} & & I_{AR} & \\ \hline I_{AR} & & E_{AR} & \\ \hline E_{AR} & & E_{AS} & \\ \hline dv/dt & & \\ \hline P_D & & \\ \hline T_J, T_{STG} & \\ \hline T_L & & \\ \hline \end{tabular}$	AOTF6N90 900 ±30 6* 3.9* 24 3.3 80 160 5 50 0.4 -55 to 150 300	V V A A MJ MJ W/ns V/ns W/°C C C C				
Parameter Drain-Source Voltage Gate-Source Voltage Continuous Drain Current Pulsed Drain Current Avalanche Current ^C Repetitive avalanche Single plused avalance Peak diode recovery of Power Dissipation ^B Junction and Storage Maximum lead tempe purpose, 1/8" from ca Thermal Characteris	$T_{c}=25^{\circ}C$ $T_{c}=100^{\circ}C$ c energy ^C the energy ^G dv/dt $T_{c}=25^{\circ}C$ Derate above 25 ^o C Temperature Range rature for soldering se for 5 seconds titcs rameter	Symbol V_{DS} V_{GS} I_D I_D I_{AR} E_{AR} E_{AS} dv/dt P_D T_J, T_{STG} T_L	AOTF6N90 900 ±30 6* 3.9* 24 3.3 80 160 5 50 0.4 -55 to 150 300 AOTF6N90	V V A A mJ W/°C °C °C °C °C Units				
Parameter Drain-Source Voltage Gate-Source Voltage Continuous Drain Current Pulsed Drain Current Avalanche Current ^C Repetitive avalanche Single plused avalance Peak diode recovery of Power Dissipation ^B Junction and Storage Maximum lead tempe purpose, 1/8" from ca Thermal Characteris	$T_{c}=25^{\circ}C$ $T_{c}=100^{\circ}C$ c energy ^C the energy ^G dv/dt $T_{c}=25^{\circ}C$ Derate above 25°C Temperature Range rature for soldering se for 5 seconds tics rameter -Ambient ^{A,D}	$\begin{tabular}{ c c c c } \hline Symbol & V_{DS} & V_{GS} & \\ \hline V_{GS} & & I_D & \\ \hline I_{DM} & & I_{AR} & \\ \hline I_{AR} & & E_{AR} & \\ \hline E_{AR} & & E_{AS} & \\ \hline dv/dt & & \\ \hline P_D & & \\ \hline T_J, T_{STG} & \\ \hline T_L & & \\ \hline \end{tabular}$	AOTF6N90 900 ±30 6* 3.9* 24 3.3 80 160 5 50 0.4 -55 to 150 300	V V A A MJ MJ W/ns V/ns W/°C C C C				

* Drain current limited by maximum junction temperature.

Electrical Characteristics (T_J=25^oC unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
STATIC	PARAMETERS					•
500		I _D =250μA, V _{GS} =0V, T _J =25℃	900			
	Drain-Source Breakdown Voltage	$I_D=250\mu A, V_{GS}=0V, T_J=150^{\circ}C$		1000		V
BV _{DSS} /∆TJ	Zero Gate Voltage Drain Current	ID=250µA, VGS=0V		1		V/°C
I _{DSS}	Zero Gate Voltage Drain Current	V_{DS} =900V, V_{GS} =0V			1	μA
DSS	Zero Gale Vollage Drain Current	V _{DS} =720V, T _J =125℃			10	
I _{GSS}	Gate-Body leakage current	$V_{DS}=0V, V_{GS}=\pm 30V$			±100	nA
V _{GS(th)}	Gate Threshold Voltage	V_{DS} =5V I_{D} =250 μ A	3.4	4.1	4.5	V
R _{DS(ON)}	Static Drain-Source On-Resistance	V_{GS} =10V, I_{D} =3A		1.74	2.2	Ω
g fs	Forward Transconductance	V_{DS} =40V, I_{D} =3A		8		S
V _{SD}	Diode Forward Voltage	I _S =1A,V _{GS} =0V		0.73	1	V
I _S	Maximum Body-Diode Continuous Current				6	Α
I _{SM}	Maximum Body-Diode Pulsed Current				24	Α
DYNAMI	C PARAMETERS					
C _{iss}	Input Capacitance		955	1196	1450	pF
C _{oss}	Output Capacitance	V _{GS} =0V, V _{DS} =25V, f=1MHz	65	82	110	pF
C _{rss}	Reverse Transfer Capacitance		6	7.8	12	pF
R _g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz	1.7	3.4	5.1	Ω
SWITCH	ING PARAMETERS					
Q _g	Total Gate Charge	V _{GS} =10V, V _{DS} =720V, I _D =6A	23	29	35	nC
Q _{gs}	Gate Source Charge		5.5	7	8.5	nC
Q _{gd}	Gate Drain Charge		10	13	20	nC
t _{D(on)}	Turn-On DelayTime			30		ns
t _r	Turn-On Rise Time	V _{GS} =10V, V _{DS} =450V, I _D =6A,		58		ns
t _{D(off)}	Turn-Off DelayTime	$R_{G}=25\Omega$		70		ns
t _f	Turn-Off Fall Time			49		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =6A,dI/dt=100A/μs,V _{DS} =100V	230	286	343	ns
Q _{rr}	Body Diode Reverse Recovery Charge	e I _F =6A,dI/dt=100A/μs,V _{DS} =100V	4.5	5.6	6.7	μC

A. The value of R $_{\rm 6JA}$ is measured with the device in a still air environment with T $_{\rm A}$ =25°C.

B. The power dissipation P_D is based on $T_{J(MAX)}$ =150°C, using junction-to-case thermal resistance, and is more useful in setting the upper

dissipation limit for cases where additional heatsinking is used.

C. Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}=150$ °C, Ratings are based on low frequency and duty cycles to keep initial $T_{J}=25$ °C.

D. The R $_{\rm 0JA}$ is the sum of the thermal impedence from junction to case R $_{\rm 0JC}$ and case to ambient.

E. The static characteristics in Figures 1 to 6 are obtained using <300 μ s pulses, duty cycle 0.5% max.

F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of $T_{J(MAX)}$ =150°C. The SOA curve provides a single pulse ratin g.

G. L=30mH, I_{AS}=3.3A, V_{DD}=150V, R_G=25\, \odot , Starting T_J=25 ${}^\circ\!\!\!C$

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

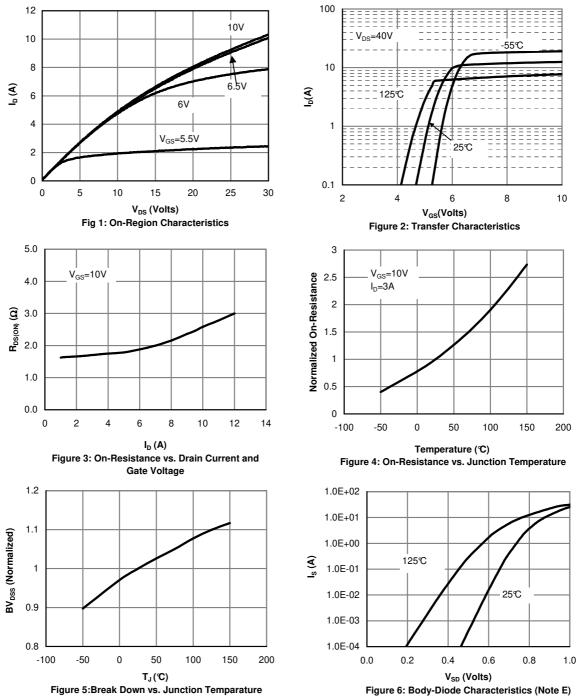


Figure 6: Body-Diode Characteristics (Note E)

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

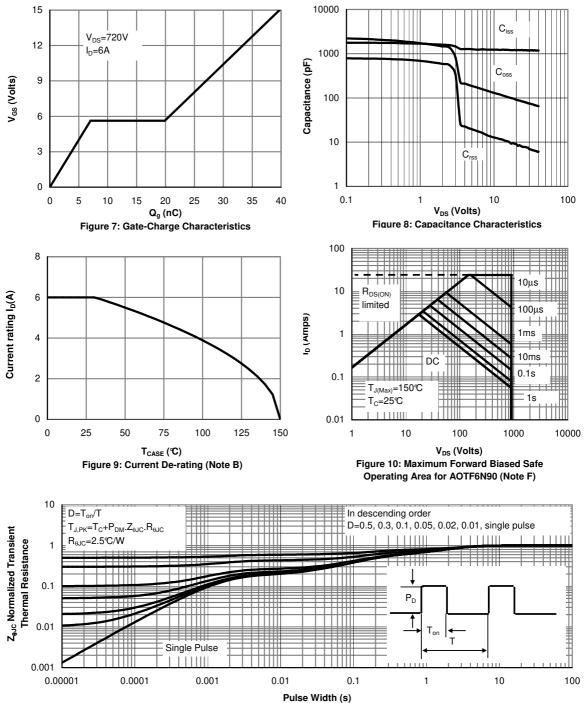
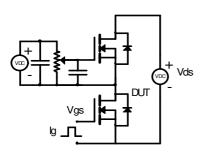
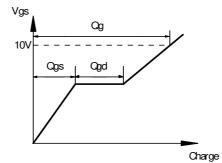
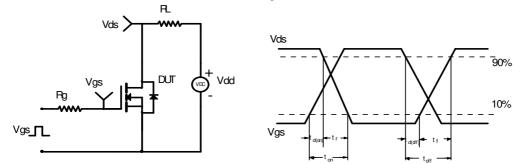
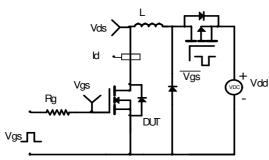
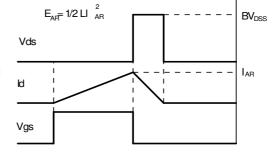




Figure 11: Normalized Maximum Transient Thermal Impedance for AOTF6N90 (Note F)

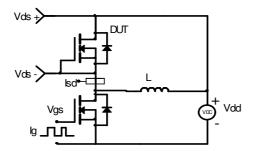


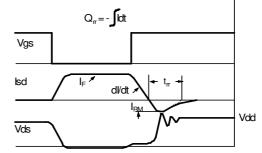
Gate Charge Test Circuit & Waveform





Resistive Switching Test Circuit & Waveforms




Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

