

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

AP2200

Step-up DC-DC Converter IC Supporting 1 or 2 Solar Cells

1. General Description

The AP2200 is a voltage step-up DC-DC converter using the synchronous rectification method to be activated with 1 or 2 solar cells and is ideal for charging lithium-ion batteries or outputting USB VBUS voltage. Also, the MPPT (Max Power Point Tracking) function is embedded in order to maximize the output power from the solar cells.

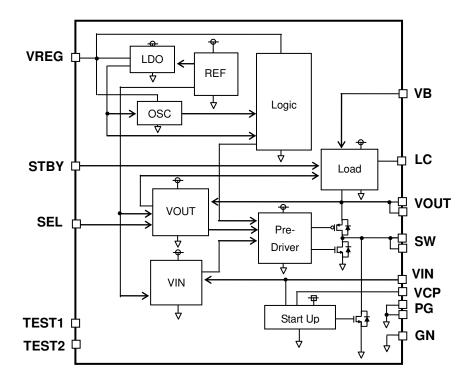
	2. Features						
•	Input voltage range	0.4 V to 1.6 V					
•	Operating temperature range	-30 to 85°C					
•	Input power	Up to 400 mW per 1 cell					
		Up to 800 mW per 2 cells					
•	Output voltage	4.0 V (±2%) per 1 cell					
		5.0 V (±5.0%) per 2 cells					
•	Control method	Comparator control method					
•	Rectification method	Synchronous rectification method					
•	Standby function	When the STBY pin is H, the LC pin is fixed to H					
•	No battery detect function	When the VB pin voltage decreases, the LC pin is fixed to H					
•	Efficiency	70% (1 cell input, 4.0 V, 50 mA output),					
		80% (2 cells input, 5.0 V, 80 mA output)					
•	Package	QFN 16-pin					
•	Application	For charging a lithium-ion battery and USB VBUS source					
		with 1 or 2 solar cells					

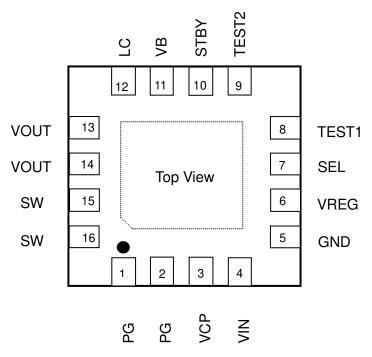
3. Table of Contents

1.	Gene	eral Description	1 -
2.	Featu	ıres	1 -
3.	Table	of Contents	2 -
4.	Block	Diagram	3 -
	Wh	en set output voltage to 4 V	3 -
5.	Order	ring Information	3 -
6.	Pin C	onfigurations and Functions	4 -
	Pin	Configurations	4 -
	Pin	Functions	4 -
7.	Absol	lute Maximum Ratings	5 -
8.	Reco	mmended Operating Conditions	5 -
9.	Electr	rical Characteristics	6 -
10.	Funct	tional Descriptions	7 -
1	0.1	Overview	7 -
1	0.2	Target voltage setting	8 -
1	0.3	MPPT control	8 -
1	0.4	Output voltage control	8 -
1	0.5	Timing chart	9 -
11.	Reco	mmended External Circuits	13 -
12.	Packa	age	14 -
13.	Revis	se History	15 -
IN	/PORT	TANT NOTICE	- 16 -

4. Block Diagram

■ When set output voltage to 4 V




Figure 1. AP2200 Block Diagram

5. Ordering Information

AP2200 $-30 \sim 85^{\circ}$ C 16-pin QFN

6. Pin Configurations and Functions

■ Pin Configurations

Please connect exposed pad to GND or leave OPEN.

■ Pin Functions

Pin No	Pin name	Type (Note 1)	I/O (Note 2)	Function	Description
1	PG	GND	-	DC-DC ground pin	
2	PG	GND	-	DC-DC ground pin	
3	VCP	A	IO	Charge pump pin	
4	VIN	PWR	-	Power input pin	
5	GND	GND	-	Ground pin	
6	VREG	A	IO	Internal regulator output pin	
7	SEL	D	I	Output voltage switch input pin	"L" = 4V,"H" = 5V
8	TEST1	1	1	Test pin	(Note 3)
9	TEST2	1	1	Test pin	(Note 3)
10	STBY	D	I	Standby input pin	"H": standby
11	VB	A	I	Battery monitoring input pin	
12	LC	D	O	External switch control pin	
13	VOUT	A	IO	DC-DC output pin	
14	VOUT	A	IO	DC-DC output pin	
15	SW	A	IO	Inductor connect pin	
16	SW	A	IO	Inductor connect pin	
EP	GND	GND	-	Tab pin	

Note 1. A: analog pin, D: digital pin, GND: ground pin, PWR: power pin.

Note 2. I: input pin, O: output pin, IO: input and output pin.

Note 3. Test pins should be connected to GND.

7. Absolute Maximum Ratings

Parameter	Symbol	min	max	Unit	Conditions
Pin voltage Range	$V_{ m VIN1}$	-0.3	1.98	V	(Note 5)
(Note 4)	$V_{ m VIN2}$	-0.3	5.5	V	(Note 6)
Input power	P_{IN}		0.8	W	
Storage temperature Range	Tstg	-40	150	°C	
Junction temperature	Tj	-30	150	°C	
Power dissipation	Pd		0.8	W	

Note 4. All voltages with respect to ground.

Note 5. VIN pin and VREG pin

Note 6. VCP pin, SEL pin, STBY pin, VB pin, LC pin, VOUT pin and SW pin

WARNING: Operation at or beyond these limits may result in permanent damage to the device. Normal operation is not guaranteed at these extremes.

8. Recommended Operating Conditions

Parameter	Symbol	min	typ	max	Unit	Conditions
Supply voltage range	$ m V_{VIN}$	0.4		1.6	V	(Note7)
Operational temperature	T_A	-30		85	°C	

Note 7. All voltages with respect to ground.

9. Electrical Characteristics

(Ta = 25 °C, except as otherwise noted)

Item	Symbol	Min	Тур	Max	Unit	Condition
Startup circuit	J		JI			
•			_	0.5	V	-30°C < Ta < -10°C
Supply voltage on startup	$V_{VINSTUP}$		0.3	0.4	V	-10°C < Ta < 85°C
DC-DC converter				011		10 0 11 10 0
		3.96	4.0	4.04		T _A = 25 °C, SEL="L"
V _{OUT} voltage	V_{TGT}	3.92	4.0	4.08	V	$T_A = -30 \text{ to } 85^{\circ}\text{C}$, SEL="L"
		4.75	5.0	5.25		$T_A = -30 \text{ to } 85^{\circ}\text{C}$, SEL="H"
V _{OUT} hysteresis	V_{TGTHYS}	0.16	0.38	0.60	%	
High-side on resistance	R _{ONTOP}		0.2		Ω	
Low-side on resistance	R_{ONBOT}		0.1			
Switching frequency	f_{OSC}	450	500	550	kHz	
Low-side current limit	I_{LIM}	0.9	1.2	1.5	A	
MPPT circuit						
VPM open circuit voltage ratio	MPP	78	80	82	%	MPP=V _{PM} /V _{OC}
Open circuit voltage sampling period	t_{SH}	90	100	110	ms	
Monitoring circuit						
No battery detect voltage	V_{BLOW}	1.0	-	2.5	V	
Low V _{OUT} detect voltage	V_{OL}	2.35	2.65	2.90	V	
Logic I/O						
	V_{OLLC}	-	-	GND+0.1		I _{LC} =-1uA
External switch driving voltage	V _{OHLC}	V _{OUT} -0.45 V _B -0.45	-	-	V	$ \begin{array}{c} I_{LC} = 1uA \\ V_{OUT} > V_B \\ V_{OUT} < V_B \end{array} $
Standby input valtage	V _{ILSTB}	-	-	0.3	V	
Standby input voltage	V_{IHSTB}	1.0	-	-	V	
Output voltage switching	V_{ILSEL}	-	-	V _{OUT} *0.3		
input voltage (Note 9)	V_{IHSEL}	V _{OUT} *0.7	-	-	V	
Control part		•		1		
Internal regulator voltage	V_{REG}	1.62	1.8	1.98	V	
Operating frequency	f_{CK}	0.9	1.0	1.1	MHz	
Pin current						
VIN pin current	$I_{ m VIN}$	-	-	50	μΑ	During DC-DC operation: VIN<1.2V@ T _A >25°C VIN<1.6V@ T _A <25°C
VB pin current	I_{VB}	-	10	20	μΑ	LC=H/L
Internal pull-down resistance						
STBY pin	R_{PDSTBY}	0.5	-	1.5	ΜΩ	
SEL pin	R _{PDSEL}	0.5	-	1.5	ΜΩ	
<u> </u>				1		<u> </u>

Note 8. All voltages with respect to ground.

Note 9. Connect the SEL pin to the VOUT or the GND pin.

10. Functional Descriptions

10.1 Overview

When the output voltage is entered into VIN from the solar cell(s), the low voltage startup circuit starts to step up the output voltage (V_{OUT}). When V_{OUT} reaches the voltage required for operation of the step-up converter, the low voltage startup circuit stops and the step-up converter starts. After that, the step-up converter increases V_{OUT} to the target voltage (V_{TGT}) and controls V_{OUT} so that it will be stabilized at V_{TGT} . Also, when V_{OUT} reaches V_{TGT} , the step-up converter decreases the LC pin to a low level. For the application where an external PMOS load switch is connected to the LC pin, when the LC pin becomes a low level, the external switch is turned ON to start the power supply to the equipment. However, if one of the conditions below is met, the external load switch is turned OFF to stop the power supply:

Table 1. stop power supply

	acto 1. stop po or suppri	
		The AP2200 has a standby function. When the
		STBY pin is set to a high level (V _{IHSTB}), the
		external load switch is turned OFF to stop power
1	The STBY pin is set to a high level:	supply. In this case, the step-up converter is still
		running even in a standby state. When the STBY
		pin is set to a low level (V_{ILSTB}), the standby mode
		is released and the power supply is resumed.
		The AP2200 has a battery monitoring function.
		When the VB pin voltage decrease to VBLOW or
		lower, it is assumed that the battery is removed,
		and the external load switch is turned OFF to stop
2	The VD win and the visit and the visit and the V	power supply. When the VB pin voltage increases
2	The VB pin voltage is less than or equal to V_{BLOW} :	to VBLOW or higher, it is assumed that the battery
		is reinserted, and the external load switch is turned
		ON to start power supply.
		To disable this function, connect the VB pin to the
		VOUT pin.
		When the VOUT pin voltage decreases to V _{OL} and
		lower, the external load switch is turned OFF to
3	The VOUT pin voltage is less than or equal to V_{OL} :	stop power supply. In this case, the step-up
		converter is still running. When V _{VOUT} reaches
		V_{TGT} again, the power supply is resumed.
		The AP2200 turns OFF the external load switch as
		well as pausing the voltage step-up operation.
	When sampling the open circuit voltage (V_{OC}) of	When the sampling of the open circuit voltage
		comes to an end, the voltage step-up operation
		resumes. Unless VOUT reaches VTGT again, the
4	the solar cell(s) per the cycle t_{SH} ,	external load switch is not turned ON.
	the solar cell(s) per the cycle t_{SH} ,	This prevents back flow from the battery to VOUT
		to minimize the battery consumption when the
		power supply from the solar cell(s) decreases, and
		the step-up converter cannot increase the voltage
		sufficiently.

10.2 Target voltage setting

The target voltage (V_{TGT}) is selectable based on the SEL pin.

Table 2. Target voltage setting

SEL pin level	Target voltage (V _{TGT}) setting
L	4 V
Н	5 V

10.3 MPPT control

The voltage step-up operation is paused per the cycle t_{SH} and the open circuit voltage (V_{OC}) of the solar cell(s) is sampled. This PWM function first calculates the voltage (V_{PM}) from VOC where the maximum output can be obtained based on the solar cell properties and then controls the step-up converter to obtain the voltage (V_{PM}) .

10.4 Output voltage control

The step-up converter always monitors V_{OUT} . As soon as V_{OUT} reaches the setting voltage (V_{TGT}) , the converter stops the voltage step-up. When the voltage step-up operation is stopped, V_{OUT} decreases due to load consumption. When V_{OUT} drops by V_{TGTHYS} or more from V_{TGT} , the step-up operation is restarted.

10.5 Timing chart

• Normal operation (the voltage increases to VOUT after startup)

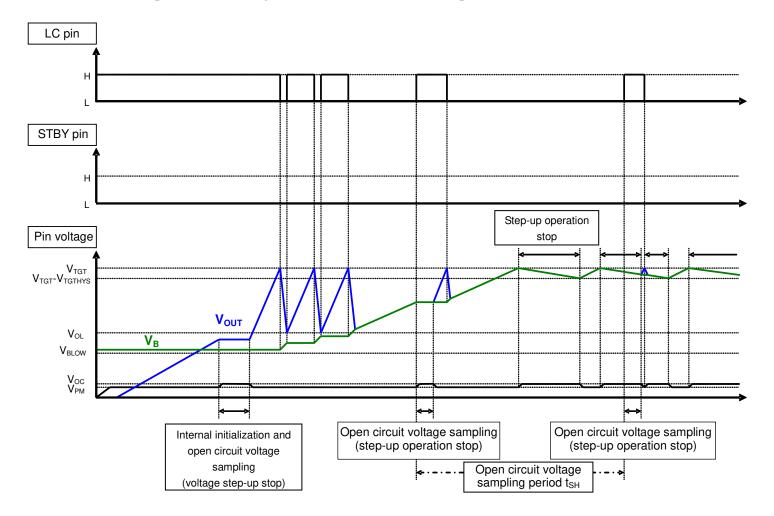


Figure 2. Normal operation

• Behavior of when solar cell output decreases

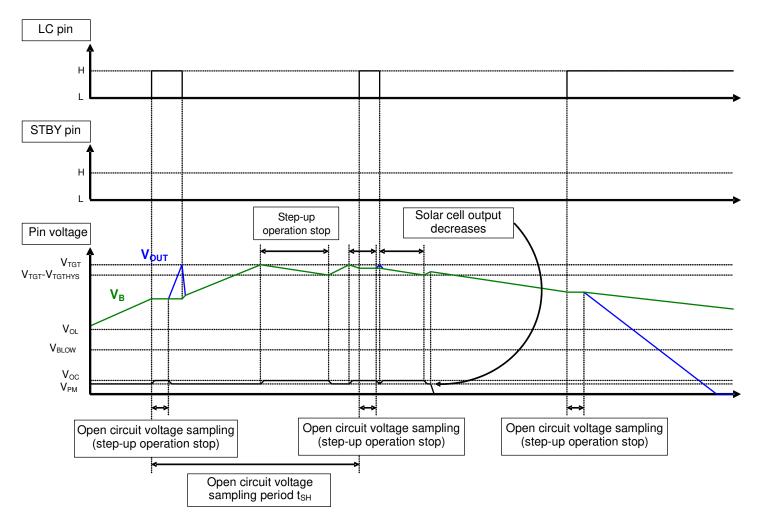


Figure 3. Behavior of when solar cell output decreases

• Behavior when the STBY pin is asserted

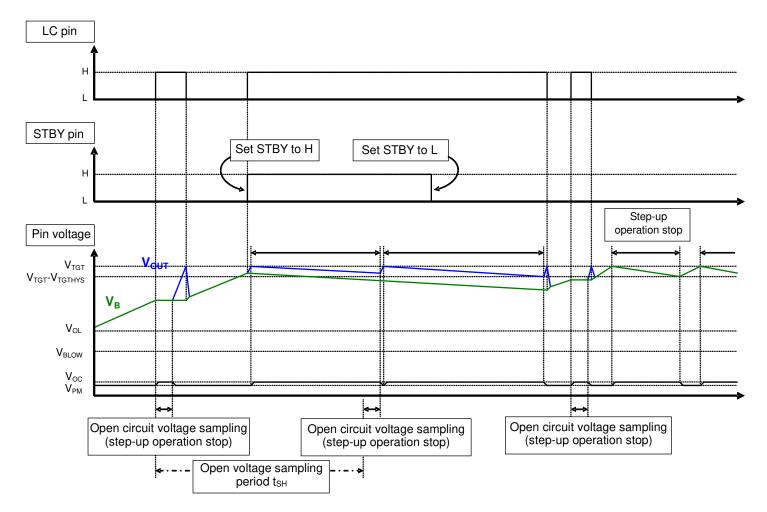


Figure 4. Behavior when the STBY pin is asserted

• Behavior when no battery is connected.

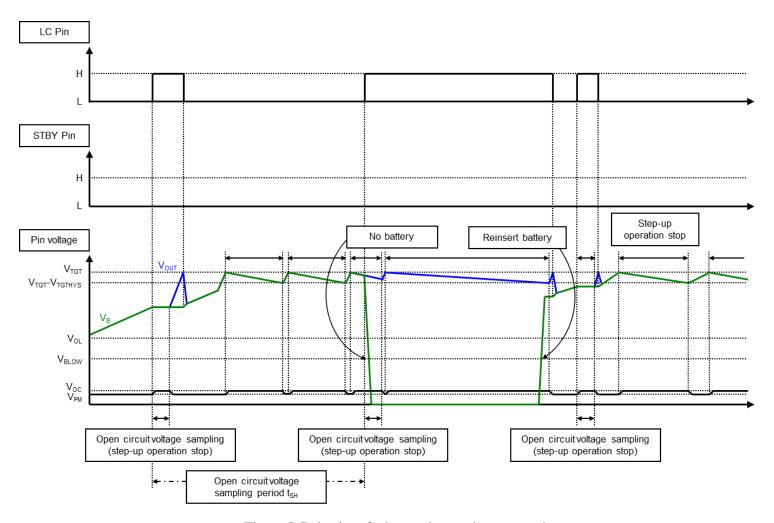


Figure 5. Behavior of when no battery is connected.

11. Recommended External Circuits

■ When setting the output voltage to 5V or 4V

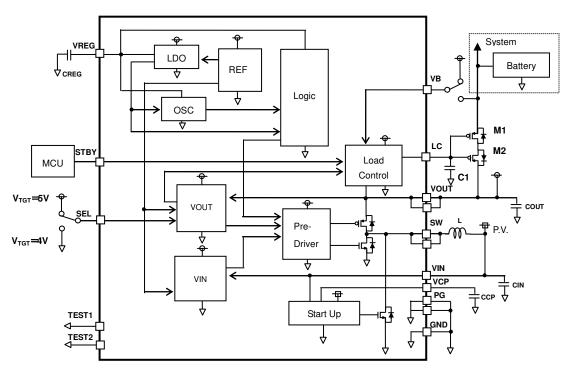


Figure 6. External Circuits

- Note 10. \P : Power supply of the startup circuit. The supply source is P.V.
 - T: Power supply of the Internal circuits, VB pin and SEL pin for pull up.
- Note 11. Select the C1 value to prevent the LC pin voltage from exceeding the absolute maximum rating due to the current through parasitic capacitance of the external load switch.

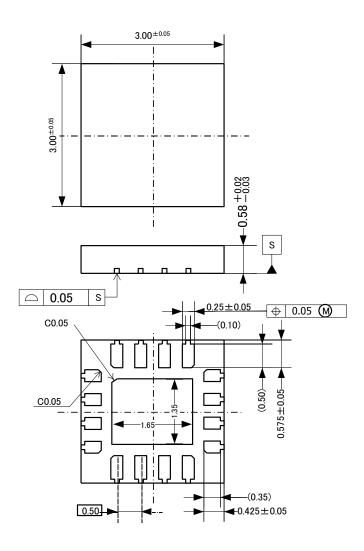
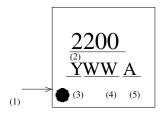

■ Recommended Parts

Table 3. Reference design list of materials


Item	Symbol	Value	Part number	Manufacturer	
Ceramic	CIN	10μF	-	-	
Capacitors	COUT	10μF	-	-	
	CREG	1μF	-	-	
	CCP	0.01µF	-	-	
	C1	0.1μF	-	-	
Inductors	L1(with 1cell)	4.7μH	SLF6045T-4R7N2R4-3PF	TDK	
	L2(with 2cell)	6.8µH	SLF6045T-6R8N2R0-3PF	TDK	
Load switches	M1, M2	-	NTS2101P	On Semiconductor	

12. Package

■ Outline Dimensions

■ Marking

- (1) Pin 1 Mark
- (2) Part No. : 2200
- (3) Year Code (last 1 digit)
- (4) Week Code
- (5) Management Code.

13. Revise History

Date (YY/MM/DD)	Revision	Page	Contents
2012/11/19	00		First edition
2014/04/28	01	14	Replace "Outline dimensions"

IMPORTANT NOTICE —

0. Asahi Kasei Microdevices Corporation ("AKM") reserves the right to make changes to the information contained in this document without notice. When you consider any use or application of AKM product stipulated in this document ("Product"), please make inquiries the sales office of AKM or authorized distributors as to current status of the Products.

- 1. All information included in this document are provided only to illustrate the operation and application examples of AKM Products. AKM neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of AKM or any third party with respect to the information in this document. You are fully responsible for use of such information contained in this document in your product design or applications. AKM ASSUMES NO LIABILITY FOR ANY LOSSES INCURRED BY YOU OR THIRD PARTIES ARISING FROM THE USE OF SUCH INFORMATION IN YOUR PRODUCT DESIGN OR APPLICATIONS.
- 2. The Product is neither intended nor warranted for use in equipment or systems that require extraordinarily high levels of quality and/or reliability and/or a malfunction or failure of which may cause loss of human life, bodily injury, serious property damage or serious public impact, including but not limited to, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. Do not use Product for the above use unless specifically agreed by AKM in writing.
- 3. Though AKM works continually to improve the Product's quality and reliability, you are responsible for complying with safety standards and for providing adequate designs and safeguards for your hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of the Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption.
- 4. Do not use or otherwise make available the Product or related technology or any information contained in this document for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). When exporting the Products or related technology or any information contained in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. The Products and related technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 5. Please contact AKM sales representative for details as to environmental matters such as the RoHS compatibility of the Product. Please use the Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. AKM assumes no liability for damages or losses occurring as a result of noncompliance with applicable laws and regulations.
- 6. Resale of the Product with provisions different from the statement and/or technical features set forth in this document shall immediately void any warranty granted by AKM for the Product and shall not create or extend in any manner whatsoever, any liability of AKM.
- 7. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of AKM.