

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

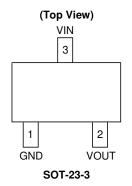
Email & Skype: info@chipsmall.com Web: www.chipsmall.com

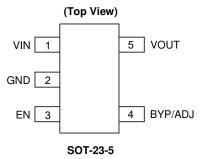
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Description

The AP2210 is a 300mA ULDO regulator which provides very low noise, ultra low dropout voltage (typically 250mV at 300mA), very low standby current (1 μ A maximum) and excellent power supply ripple rejection (PSRR 75dB at 100Hz) in battery powered applications, such as handsets, PDAs and in noise sensitive applications, such as RF electronics.

The AP2210 also features individual logic compatible enable/shutdown control inputs, a low power shutdown mode for extended battery life, over current protection, over temperature protection, as well as reversed-battery protection.

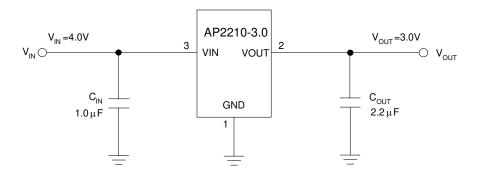

The AP2210 has 2.5V, 2.8V, 3.0V, 3.3V, 3.6V, 4.0V, 5.0V and ADJ versions.

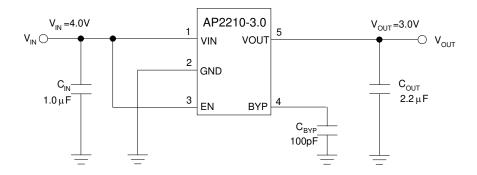

The AP2210 is available in space saving SOT-23-3 and SOT-23-5 packages.

Features

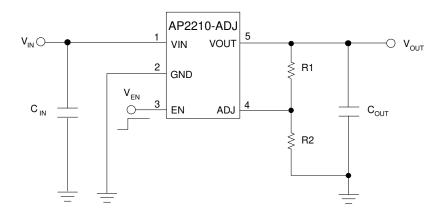
- Up to 300mA Output Current
- Excellent ESR Stability
- Low Standby Current
- Low Dropout Voltage: V_{DROP} = 250mV at 300mA
- High Output Accuracy: ±1%
- Good Ripple Rejection Ability: 75dB at 100Hz and I_{OUT} = 100μA
- Tight Load and Line Regulation
- Low Temperature Coefficient
- Over Current Protection
- Thermal Protection
- Reverse-battery Protection
- Logic-controlled Enable
- Lead-Free Packages: SOT-23-3, SOT-23-5
 - Totally Lead-Free; RoHS Compliant (Notes 1 & 2)
- Lead-Free Packages, Available in "Green" Molding Compound: SOT-23-3, SOT-23-5
 - Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
 - Halogen and Antimony Free. "Green" Device (Note 3)

Pin Assignments


Applications


- Cellular Phones
- Cordless Phones
- Wireless Communicators
- PDAs/Palmtops
- PC Mother Board
- Consumer Electronics

- 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS) & 2011/65/EU (RoHS 2) compliant.
- 2. See http://www.diodes.com/quality/lead_free.html for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
- 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.

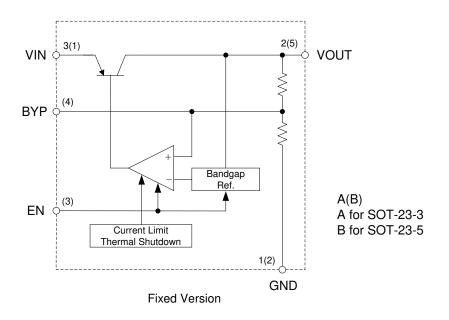


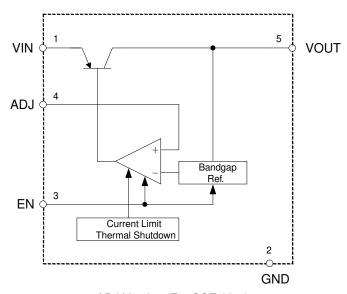
Typical Applications Circuit (Note 4)

For Fixed Version

 $V_{OUT} = 1.25V^*(1+R2/R1)$

For Adjustable Version


Note 4: Dropout voltage is 250mV when T_A = +25°C. In order to obtain a normal output voltage, V_{OUT}+0.25V is the minimum input voltage which will result a low PSRR, imposing a bad influence on system. Therefore, the recommended input voltage is V_{OUT}+1V to 13.2V. For AP2210-3.0 version, its input voltage can be set from 4V (V_{OUT}+1V) to 13.2V.



Pin Descriptions

Pin N	lumber	B: N			
SOT-23-3	SOT-23-5	Pin Name	Function		
1	1 2 GND		Ground		
2	5	VOUT	Regulated output voltage		
3	1	VIN	Input voltage		
-	3	EN	Enable input: CMOS or TTL compatible input. Logic high=enable, logic low=shutdown		
_	4	BYP/ADJ	Bypass capacitor for low noise operation/Adjustable Output		

Functional Block Diagram

ADJ Version (For SOT-23-5)

Absolute Maximum Ratings (Note 5)

Symbol	Parameter	Rat	ting	Unit
V _{IN}	Supply Input Voltage	1	5	V
V _{EN}	Enable Input Voltage	1	5	V
P _D	Power Dissipation		y Limited Protection)	W
T _{LEAD}	Lead Temperature (Soldering, 10sec)	+260		°C
TJ	Junction Temperature	+1	50	°C
T _{STG}	Storage Temperature	-65 to	+150	°C
ESD	ESD (Machine Model)	30	00	V
0	SOT-23-3 200		200	
θ _{JA}	Thermal Resistance (No Heatsink) SOT-23-5		200	°C/W

Note 5: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

Recommended Operating Conditions

Symbol	Parameter	Min	Max	Unit
V _{IN}	Supply Input Voltage	2.5	13.2	V
V _{EN}	Enable Input Voltage	0	13.2	V
TJ	Operating Junction Temperature	-40	+125	°C

Electrical Characteristics

AP2210-2.5 Electrical Characteristics (V_{IN} = 3.5V, I_{OUT} = 100μA, C_{IN} = 1.0μF, C_{OUT} = 2.2μF, V_{EN} ≥ 2.0V, T_{J} = +25°C, **bold** typeface applies over -40°C ≤ T_{J} ≤ +125°C (Note 6), unless otherwise specified.)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	Outrot Walkana Assuman	Mariation from an affind M	-1	_	1	0/
$\Delta V_{OUT}/V_{OUT}$	Output Voltage Accuracy	Variation from specified V _{OUT}	-2	_	2	%
$\Delta V_{OUT}/\Delta T$	Output Voltage Temperature	_	ı	120	_	μV/°C
$(\Delta V_{OUT}/V_{OUT})/\Delta T$	Coefficient (Note 7)	_	_	48	_	ppm/°C
V	Line Develotion	V 0.5V4-10.0V	_	1.5	4.5	
V_{RLINE}	Line Regulation	$V_{IN} = 3.5V \text{ to } 13.2V$	-	_	12	mV
V	Lond Develotion (Nata 0)	0.4	_	1	6	
V_{RLOAD}	Load Regulation (Note 8)	I _{OUT} = 0.1mA to 300mA	_	_	30	mV
		1004	_	15	50	
V_{DROP}		I _{OUT} = 100μA	_	_	70	
	Dropout Voltage (Note 9)	I _{OUT} = 50mA	_	110	150	
			_	_	230	mV
		I _{OUT} = 100mA	_	140	250	
			_	_	300	
		I _{OUT} = 150mA	_	165	275	
			_	_	350	
			_	250	400	
		I _{OUT} = 300mA	_	_	500	=
		V _{EN} ≤ 0.4V (shutdown)	_	0.01	1	
I _{STD}	Standby Current	V _{EN} ≤ 0.18V (shutdown)	_	_	5	μΑ
			_	100	150	
		V _{EN} ≥ 2.0V, I _{OUT} = 100μA	_	_	180	
		.,	_	350	600	μΑ
		V _{EN} ≥ 2.0V, I _{OUT} = 50mA	_	_	800	
IGND	I _{GND} Ground Pin Current (Note 10)	V > 0.0V	-	1.3	1.9	
	V _{EN} ≥ 2.0V, I _{OUT} = 150mA	_	_	2.5		
		V > 0.0V I 200 A	-	4	10	mA
		V _{EN} ≥ 2.0V, I _{OUT} = 300mA	-	-	15	
PSRR	Ripple Rejection	f = 100Hz, I _{OUT} = 100μA	-	75	-	dB
I _{LIMIT}	Current Limit	V _{OUT} = 0V	_	450	900	mA

AP2210-2.5 Electrical Characteristics ($V_{IN} = 3.5V$, $I_{OUT} = 100\mu A$, $C_{IN} = 1.0\mu F$, $C_{OUT} = 2.2\mu F$, $V_{EN} \ge 2.0V$, $T_{J} = +25$ °C, bold typeface applies over -40°C ≤ $T_{J} \le +125$ °C (Note 6), unless otherwise specified.)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
e _{no}	Output Noise	$I_{OUT} = 50$ mA, $C_{OUT} = 2.2\mu$ F, 100pF from BYP to GND	-	260	_	nV/\sqrt{Hz}
.,			_	_	0.4	.,
V _{IL}	Enable Input Logic-low Voltage	Regulator shutdown	-	-	0.18	V
V_{IH}	Enable Input Logic-high Voltage	Regulator enabled	2.0	_	-	V
		V _{IL} ≤ 0.4V	_	0.01	1	
I _{IL}	Enable Input Logic-low Current	V _{IL} ≤ 0.18V	_	_	2	μΑ
	I _{IH} Enable Input Logic-high Current	V _{IL} ≥ 2.0V	-	5	20	μА
lін		V _{IL} ≥ 2.0V	_	-	25	

- 6. Specifications in bold type are limited to -40°C ≤ T_J ≤ +125°C. Limits over temperature are guaranteed by design, but not tested in production.
- 7. Output voltage temperature coefficient is defined as the worst case voltage change divided by the total temperature range.
- 9. Regulation is measured at constant junction temperature using low duty cycle pulse testing. Parts are tested for load regulation in the load range from 0.1mA to 300mA. Changes in output voltage due to heating effects are covered by the thermal regulation specification.
- 9. Dropout voltage is defined as the input to output differential at which the output voltage drops 1% $(T_J = +25^{\circ}C)$ or 2% $(-40^{\circ}C \le T_J \le +125^{\circ}C)$ below its nominal value measured at 1V differential.
- 10. Ground pin current is the regulator quiescent current plus pass transistor base current. The total current drawn from the supply is the sum of the load current plus the ground pin current.

AP2210-2.8 Electrical Characteristics ($V_{IN} = 3.8V$, $I_{OUT} = 100\mu A$, $C_{IN} = 1.0\mu F$, $C_{OUT} = 2.2\mu F$, $V_{EN} \ge 2.0V$, $T_{J} = +25^{\circ}C$, bold typeface applies over -40°C ≤ $T_{J} \le +125^{\circ}C$ (Note 6), unless otherwise specified.)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	Outsid Walks are Assumed	Mariatian form on a figure	-1	_	1	0,
$\Delta V_{OUT}/V_{OUT}$	Output Voltage Accuracy	Variation from specified V _{OUT}	-2	_	2	%
ΔV _{OUT} /ΔΤ	Output Voltage Temperature	-	_	120	-	μV/°C
(ΔV _{OUT} /V _{OUT})/ΔΤ	Coefficient (Note 7)	-	-	42.8	-	ppm/°C
.,	l: B l:	V 0.0V to 10.0V	_	1.5	4.5	.,
V_{RLINE}	Line Regulation	V _{IN} = 3.8V to 13.2V	_	_	12	mV
.,			_	1	6	.,
V_{RLOAD}	Load Regulation (Note 8)	I _{OUT} = 0.1mA to 300mA	_	_	30	mV
			_	15	50	
V _{DROP} Dropout Voltage (Note 9)		I _{OUT} = 100μA	_	_	70	
	December (Note of Alice Of	I _{OUT} = 50mA	_	110	150	
			_	_	230	mV
		I _{OUT} = 100mA	_	140	250	
	Dropout Voltage (Note 9)		_	_	300	
		I _{OUT} = 150mA	_	165	275	
			_	_	350	
			_	250	400	
		I _{OUT} = 300mA	_	_	500	
_		V _{EN} ≤ 0.4V (shutdown)	_	0.01	1	
I _{STD}	Standby Current	V _{EN} ≤ 0.18V (shutdown)	_	_	5	μΑ
			_	100	150	
		V _{EN} ≥ 2.0V, I _{OUT} = 100μA	_	_	180	
			_	350	600	μΑ
		V _{EN} ≥ 2.0V, I _{OUT} = 50mA	_	_	800	1 !
I_{GND}	Ground Pin Current (Note 10)	V - 200V I - 470 -	-	1.3	1.9	
	V _{EN} ≥ 2.0V, I _{OUT} = 150mA	_	_	2.5	mA	
		-	4	10		
	V _{EN} ≥ 2.0V, I _{OUT} = 300mA	_	_	15		
PSRR	Ripple Rejection	f = 100Hz, I _{OUT} = 100μA	-	75	_	dB
I _{LIMIT}	Current Limit	V _{OUT} = 0V	_	450	900	mA

AP2210-2.8 Electrical Characteristics ($V_{IN} = 3.8V$, $I_{OUT} = 100\mu A$, $C_{IN} = 1.0\mu F$, $C_{OUT} = 2.2\mu F$, $V_{EN} \ge 2.0V$, $T_{J} = +25$ °C, bold typeface applies over -40°C ≤ $T_{J} \le +125$ °C (Note 6), unless otherwise specified.)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
e _{no}	Output Noise	I _{OUT} = 50mA, C _{OUT} = 2.2μF, 100pF from BYP to GND	_	260	_	nV/\sqrt{Hz}
.,			_	_	0.4	.,
V _{IL}	Enable Input Logic-low Voltage	Regulator shutdown	_	-	0.18	V
V_{IH}	Enable Input Logic-high Voltage	Regulator enabled	2.0	_	-	V
		V _{IL} ≤ 0.4V	-	0.01	1	
I _{ΙL}	Enable Input Logic-low Current	V _{IL} ≤ 0.18V	-	_	2	μΑ
		V _{IL} ≥ 2.0V	-	5	20	μА
l _{IH}	Enable Input Logic-high Current	V _{IL} ≥ 2.0V	-	_	25	

- 6. Specifications in bold type are limited to -40°C ≤ T_J ≤ +125°C. Limits over temperature are guaranteed by design, but not tested in production.
- 7. Output voltage temperature coefficient is defined as the worst case voltage change divided by the total temperature range.
- 8. Regulation is measured at constant junction temperature using low duty cycle pulse testing. Parts are tested for load regulation in the load range from 0.1mA to 300mA. Changes in output voltage due to heating effects are covered by the thermal regulation specification.
- 9. Dropout voltage is defined as the input to output differential at which the output voltage drops 1% $(T_J = +25^{\circ}C)$ or 2% $(-40^{\circ}C \le T_J \le +125^{\circ}C)$ below its nominal value measured at 1V differential.
- 10. Ground pin current is the regulator quiescent current plus pass transistor base current. The total current drawn from the supply is the sum of the load current plus the ground pin current.

AP2210-3.0 Electrical Characteristics ($V_{IN} = 4V$, $I_{OUT} = 100\mu A$, $C_{IN} = 1.0\mu F$, $C_{OUT} = 2.2\mu F$, $V_{EN} \ge 2.0V$, $T_J = +25^{\circ}C$, bold typeface applies over -40°C ≤ $T_J \le +125^{\circ}C$ (Note 6), unless otherwise specified.)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
			-1	_	1	0/
$\Delta V_{OUT}/V_{OUT}$	Output Voltage Accuracy	Variation from specified V _{OUT}	-2	_	2	%
$\Delta V_{OUT}/\Delta T$	Output Voltage Temperature	-	_	120	-	μV/°C
(ΔV _{OUT} /V _{OUT})/ΔΤ	Coefficient (Note 7)	_	_	40	-	ppm/°C
V	l: B l:	V 4V4-40.0V	_	1.5	4.5	.,
V_{RLINE}	Line Regulation	V _{IN} = 4V to 13.2V	_	_	12	mV
V	Land Daniel Star (Nata 0)	0.4	_	1	6	
V _{RLOAD}	Load Regulation (Note 8)	I _{OUT} = 0.1mA to 300mA	_	_	30	mV
		100.4	_	15	50	
V_{DROP}		I _{OUT} = 100μA	_	_	70	
	Dropout Voltage (Note 9)	I _{OUT} = 50mA	_	110	150	
			_	_	230	mV
		I _{OUT} = 100mA	_	140	250	
			_	_	300	
		I _{OUT} = 150mA	_	165	275	
			_	_	350	
			_	250	400	
			_	_	500	
		V _{EN} ≤ 0.4V (shutdown)	_	0.01	1	
I _{STD}	Standby Current	V _{EN} ≤ 0.18V (shutdown)	_	_	5	μΑ
		V > 0.0V 400 A	_	100	150	
		$V_{EN} \ge 2.0V$, $I_{OUT} = 100 \mu A$	_	_	180	
		V > 0.0V 50mA	_	350	600	μΑ
1	Cround Din Comment (Nata 40)	V _{EN} ≥ 2.0V, I _{OUT} = 50mA	_	_	800	
IGND	I _{GND} Ground Pin Current (Note 10)	V >0.0V L 4504	-	1.3	1.9	
	V _{EN} ≥ 2.0V, I _{OUT} = 150mA	-	_	2.5	mA	
	V> 2.0V I 200mA	_	4	10		
		V _{EN} ≥ 2.0V, I _{OUT} = 300mA	-	_	15	
PSRR	Ripple Rejection	f = 100Hz, I _{OUT} = 100μA	_	75	-	dB
I _{LIMIT}	Current Limit	V _{OUT} = 0V	_	450	900	mA

AP2210-3.0 Electrical Characteristics ($V_{IN} = 4V$, $I_{OUT} = 100\mu A$, $C_{IN} = 1.0\mu F$, $C_{OUT} = 2.2\mu F$, $V_{EN} \ge 2.0V$, $T_J = +25^{\circ}C$, bold typeface applies over -40°C ≤ $T_J \le +125^{\circ}C$ (Note 6), unless otherwise specified.)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
e _{no}	Output Noise	I _{OUT} = 50mA, C _{OUT} = 2.2μF, 100pF from BYP to GND	_	260	_	nV/\sqrt{Hz}
.,			_	_	0.4	.,
V _{IL}	Enable Input Logic-low Voltage	Regulator shutdown	_	-	0.18	V
V_{IH}	Enable Input Logic-high Voltage	Regulator enabled	2.0	_	-	V
		V _{IL} ≤ 0.4V	-	0.01	1	
I _{ΙL}	Enable Input Logic-low Current	V _{IL} ≤ 0.18V	-	_	2	μΑ
		V _{IL} ≥ 2.0V	-	5	20	μА
l _{IH}	Enable Input Logic-high Current	V _{IL} ≥ 2.0V	-	_	25	

- 6. Specifications in bold type are limited to -40°C ≤ T_J ≤ +125°C. Limits over temperature are guaranteed by design, but not tested in production.
- 7. Output voltage temperature coefficient is defined as the worst case voltage change divided by the total temperature range.
- 8. Regulation is measured at constant junction temperature using low duty cycle pulse testing. Parts are tested for load regulation in the load range from 0.1mA to 300mA. Changes in output voltage due to heating effects are covered by the thermal regulation specification.
- 9. Dropout voltage is defined as the input to output differential at which the output voltage drops 1% $(T_J = +25^{\circ}C)$ or 2% $(-40^{\circ}C \le T_J \le +125^{\circ}C)$ below its nominal value measured at 1V differential.
- 10. Ground pin current is the regulator quiescent current plus pass transistor base current. The total current drawn from the supply is the sum of the load current plus the ground pin current.

AP2210-3.3 Electrical Characteristics ($V_{IN} = 4.3V$, $I_{OUT} = 100\mu A$, $C_{IN} = 1.0\mu F$, $C_{OUT} = 2.2\mu F$, $V_{EN} \ge 2.0V$, $T_J = +25^{\circ}C$, bold typeface applies over -40°C ≤ $T_J \le +125^{\circ}C$ (Note 6), unless otherwise specified.)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
			-1	_	1	2/
$\Delta V_{OUT}/V_{OUT}$	Output Voltage Accuracy	Variation from specified V _{OUT}	-2	_	2	%
ΔV _{OUT} /ΔΤ	Output Voltage Temperature	-	_	120	-	μV/°C
(ΔV _{OUT} /V _{OUT})/ΔΤ	Coefficient (Note 7)	_	-	36.3	-	ppm/°C
V		V 40V4-400V	_	1.5	4.5	
V_{RLINE}	Line Regulation	$V_{IN} = 4.3V$ to 13.2V	-	_	12	mV
V	Local Develotion (Nets 0)	0.4	-	1	6	
V_{RLOAD}	Load Regulation (Note 8)	I _{OUT} = 0.1mA to 300mA	_	_	30	mV
		1004	_	15	50	
V_{DROP}		I _{OUT} = 100μA	-	_	70	
	Dropout Voltage (Note 9)	I _{OUT} = 50mA	_	110	150	
			_	_	230	mV
		I _{OUT} = 100mA	_	140	250	
			_	_	300	
		I _{OUT} = 150mA	-	165	275	
			-	_	350	
			-	250	400	
			-	_	500	
		V _{EN} ≤ 0.4V (shutdown)	_	0.01	1	
I _{STD}	Standby Current	V _{EN} ≤ 0.18V (shutdown)	_	_	5	μΑ
		V > 0.0V 400 A	-	100	150	
		V _{EN} ≥ 2.0V, I _{OUT} = 100μA	_	_	180	
		V > 0.0V 50. A	_	350	600	μΑ
		V _{EN} ≥ 2.0V, I _{OUT} = 50mA	_	_	800	
IGND	I _{GND} Ground Pin Current (Note 10)	V > 0.0V I 450 A	-	1.3	1.9	
	V _{EN} ≥ 2.0V, I _{OUT} = 150mA	_	_	2.5	mA	
	V >0.0V	_	4	10		
		V _{EN} ≥ 2.0V, I _{OUT} = 300mA	_	_	15	
PSRR	Ripple Rejection	f = 100Hz, I _{OUT} = 100μA	-	75	-	dB
I _{LIMIT}	Current Limit	V _{OUT} = 0V	_	450	900	mA

AP2210-3.3 Electrical Characteristics ($V_{IN} = 4.3V$, $I_{OUT} = 100\mu A$, $C_{IN} = 1.0\mu F$, $C_{OUT} = 2.2\mu F$, $V_{EN} \ge 2.0V$, $T_{J} = +25$ °C, bold typeface applies over -40°C ≤ $T_{J} \le +125$ °C (Note 6), unless otherwise specified.)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
e _{no}	Output Noise	I _{OUT} = 50mA, C _{OUT} = 2.2μF, 100pF from BYP to GND	_	260	_	nV/\sqrt{Hz}
.,			_	_	0.4	.,
V _{IL}	Enable Input Logic-low Voltage	Regulator shutdown	_	-	0.18	V
V_{IH}	Enable Input Logic-high Voltage	Regulator enabled	2.0	_	-	V
		V _{IL} ≤ 0.4V	-	0.01	1	
I _{ΙL}	Enable Input Logic-low Current	V _{IL} ≤ 0.18V	-	_	2	μΑ
		V _{IL} ≥ 2.0V	-	5	20	μА
l _{IH}	Enable Input Logic-high Current	V _{IL} ≥ 2.0V	-	_	25	

- 6. Specifications in bold type are limited to -40°C ≤ T_J ≤ +125°C. Limits over temperature are guaranteed by design, but not tested in production.
- 7. Output voltage temperature coefficient is defined as the worst case voltage change divided by the total temperature range.
- 8. Regulation is measured at constant junction temperature using low duty cycle pulse testing. Parts are tested for load regulation in the load range from 0.1mA to 300mA. Changes in output voltage due to heating effects are covered by the thermal regulation specification.
- 9. Dropout voltage is defined as the input to output differential at which the output voltage drops 1% $(T_J = +25^{\circ}C)$ or 2% $(-40^{\circ}C \le T_J \le +125^{\circ}C)$ below its nominal value measured at 1V differential.
- 10. Ground pin current is the regulator quiescent current plus pass transistor base current. The total current drawn from the supply is the sum of the load current plus the ground pin current.

AP2210-3.6 Electrical Characteristics ($V_{IN} = 4.6V$, $I_{OUT} = 100\mu A$, $C_{IN} = 1.0\mu F$, $C_{OUT} = 2.2\mu F$, $V_{EN} \ge 2.0V$, $T_J = +25^{\circ}C$, bold typeface applies over -40°C ≤ $T_J \le +125^{\circ}C$ (Note 6), unless otherwise specified.)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	Outrot Waltana Assuran	Mariation from an affind M	-1	_	1	0,
$\Delta V_{OUT}/V_{OUT}$	Output Voltage Accuracy	Variation from specified V _{OUT}	-2	_	2	%
$\Delta V_{OUT}/\Delta T$	Output Voltage Temperature	_	-	120	-	μV/°C
$(\Delta V_{OUT}/V_{OUT})/\Delta T$	Coefficient (Note 7)	_	-	48	-	ppm/°C
.,	l: B 1.5	V 4.0V4- 40.0V	_	1.5	4.5	.,
V_{RLINE}	Line Regulation	V _{IN} = 4.6V to 13.2V	_	_	12	mV
.,			_	1	6	.,
V_{RLOAD}	Load Regulation (Note 8)	I _{OUT} = 0.1mA to 300mA	_	_	30	mV
			_	15	50	
V_{DROP}		Ι _{ΟUT} = 100μΑ	_	_	70	
	V _{DROP} Dropout Voltage (Note 9)	I _{OUT} = 50mA	-	110	150	
			_	_	230	mV
		I _{OUT} = 100mA	_	140	250	
			_	_	300	
		I _{OUT} = 150mA	_	165	275	
			_	_	350	
			_	250	400	
			_	_	500	
		V _{EN} ≤ 0.4V (shutdown)	_	0.01	1	
I _{STD}	Standby Current	V _{EN} ≤ 0.18V (shutdown)	_	_	5	μΑ
			_	100	150	
		V _{EN} ≥ 2.0V, I _{OUT} = 100μA	_	_	180	
			_	350	600	μΑ
		V _{EN} ≥ 2.0V, I _{OUT} = 50mA	_	_	800	1
I _{GND}	I _{GND} Ground Pin Current (Note 10)		-	1.3	1.9	
		V _{EN} ≥ 2.0V, I _{OUT} = 150mA	_	-	2.5	1
		-	4	10	mA	
		V _{EN} ≥ 2.0V, I _{OUT} = 300mA	_	-	15	
PSRR	Ripple Rejection	f = 100Hz, I _{OUT} = 100μA	-	75	_	dB
I _{LIMIT}	Current Limit	V _{OUT} = 0V	_	450	900	mA

AP2210-3.6 Electrical Characteristics ($V_{IN} = 4.6V$, $I_{OUT} = 100\mu A$, $C_{IN} = 1.0\mu F$, $C_{OUT} = 2.2\mu F$, $V_{EN} \ge 2.0V$, $T_{J} = +25$ °C, bold typeface applies over -40°C ≤ $T_{J} \le +125$ °C (Note 6), unless otherwise specified.)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
e _{no}	Output Noise	$I_{OUT} = 50$ mA, $C_{OUT} = 2.2\mu$ F, 100pF from BYP to GND	-	260	_	nV/\sqrt{Hz}
.,		Regulator shutdown	_	_	0.4	V
V _{IL}	Enable Input Logic-low Voltage		-	-	0.18	
V_{IH}	Enable Input Logic-high Voltage	Regulator enabled	2.0	_	-	٧
	Enable Input Logic-low Current	V _{IL} ≤ 0.4V	_	0.01	1	
I _{IL}		V _{IL} ≤ 0.18V	_	_	2	μΑ
		V _{IL} ≥ 2.0V	-	5	20	_
Іін	Enable Input Logic-high Current	V _{IL} ≥ 2.0V	_	-	25	μΑ

- 6. Specifications in bold type are limited to -40°C ≤ T_J ≤ +125°C. Limits over temperature are guaranteed by design, but not tested in production.
- 7. Output voltage temperature coefficient is defined as the worst case voltage change divided by the total temperature range.
- 8. Regulation is measured at constant junction temperature using low duty cycle pulse testing. Parts are tested for load regulation in the load range from 0.1mA to 300mA. Changes in output voltage due to heating effects are covered by the thermal regulation specification.
- 9. Dropout voltage is defined as the input to output differential at which the output voltage drops 1% $(T_J = +25^{\circ}C)$ or 2% $(-40^{\circ}C \le T_J \le +125^{\circ}C)$ below its nominal value measured at 1V differential.
- 10. Ground pin current is the regulator quiescent current plus pass transistor base current. The total current drawn from the supply is the sum of the load current plus the ground pin current.

AP2210-4.0 Electrical Characteristics ($V_{IN} = 5.0V$, $I_{OUT} = 100\mu A$, $C_{IN} = 1.0\mu F$, $C_{OUT} = 2.2\mu F$, $V_{EN} \ge 2.0V$, $T_{J} = +25^{\circ}C$, bold typeface applies over -40°C ≤ $T_{J} \le +125^{\circ}C$ (Note 6), unless otherwise specified.)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	Output Voltage Accuracy	Variation from specified V _{OUT}	-1	_	1	
$\Delta V_{ m OUT}/V_{ m OUT}$			-2	_	2	%
ΔV _{OUT} /ΔΤ	Output Voltage Temperature	-	_	120	_	μV/°C
$(\Delta V_{OUT}/V_{OUT})/\Delta T$	Coefficient (Note 7)	_	_	48	-	ppm/°C
V	1. 5 1.	V 5 0V4- 40 0V	_	1.5	4.5	.,,
V_{RLINE}	Line Regulation	$V_{IN} = 5.0V \text{ to } 13.2V$	_	_	12	mV
	Lood Domilation (Nata 0)	0.4 4 200 4	_	1	6	····\/
V _{RLOAD}	Load Regulation (Note 8)	I _{OUT} = 0.1mA to 300mA	_	_	30	mV
		1004	_	15	50	
		I _{OUT} = 100μA	_	_	70	
			_	110	150	
	Dropout Voltage (Note 9)	I _{OUT} = 50mA	_	_	230	mV
V		I _{OUT} = 100mA	_	140	250	
V_{DROP}			_	_	300	
		I _{OUT} = 150mA	_	165	275	
			-	_	350	
		I _{OUT} = 300mA	_	250	400	
			-	_	500	
	Observation Community	V _{EN} ≤ 0.4V (shutdown)	_	0.01	1	
I _{STD}	Standby Current	V _{EN} ≤ 0.18V (shutdown)	_	_	5	μΑ
		V _{EN} ≥ 2.0V, I _{OUT} = 100μA	_	100	150	μA mA
			_	_	180	
		V > 2.0V F0 = A	_	350	600	
	Crawad Dia Correct (Nata 10)	V _{EN} ≥ 2.0V, I _{OUT} = 50mA	_	_	800	
I_{GND}	Ground Pin Current (Note 10)	V=v > 2.0V laur= 150mA	_	1.3	1.9	
		V _{EN} ≥ 2.0V, I _{OUT} = 150mA	-	_	2.5	
		V _{EN} ≥ 2.0V, I _{OUT} = 300mA	_	4	10	
			-	_	15	
PSRR	Ripple Rejection	f = 100Hz, I _{OUT} = 100μA	-	75	_	dB
I _{LIMIT}	Current Limit	V _{OUT} = 0V	-	450	900	mA

AP2210-4.0 Electrical Characteristics ($V_{IN} = 5.0V$, $I_{OUT} = 100\mu A$, $C_{IN} = 1.0\mu F$, $C_{OUT} = 2.2\mu F$, $V_{EN} \ge 2.0V$, $T_{J} = +25$ °C, bold typeface applies over -40°C ≤ $T_{J} \le +125$ °C (Note 6), unless otherwise specified.)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
e _{no}	Output Noise	$I_{OUT} = 50$ mA, $C_{OUT} = 2.2\mu$ F, 100pF from BYP to GND	-	260	_	nV/\sqrt{Hz}
.,		Regulator shutdown	_	_	0.4	V
V _{IL}	Enable Input Logic-low Voltage		-	-	0.18	
V_{IH}	Enable Input Logic-high Voltage	Regulator enabled	2.0	_	-	٧
	Enable Input Logic-low Current	V _{IL} ≤ 0.4V	_	0.01	1	
I _{IL}		V _{IL} ≤ 0.18V	_	_	2	μΑ
		V _{IL} ≥ 2.0V	-	5	20	_
Іін	Enable Input Logic-high Current	V _{IL} ≥ 2.0V	_	-	25	μΑ

- 6. Specifications in bold type are limited to -40°C ≤ T_J ≤ +125°C. Limits over temperature are guaranteed by design, but not tested in production.
- 7. Output voltage temperature coefficient is defined as the worst case voltage change divided by the total temperature range.
- 8. Regulation is measured at constant junction temperature using low duty cycle pulse testing. Parts are tested for load regulation in the load range from 0.1mA to 300mA. Changes in output voltage due to heating effects are covered by the thermal regulation specification.
- 9. Dropout voltage is defined as the input to output differential at which the output voltage drops 1% $(T_J = +25^{\circ}C)$ or 2% $(-40^{\circ}C \le T_J \le +125^{\circ}C)$ below its nominal value measured at 1V differential.
- 10. Ground pin current is the regulator quiescent current plus pass transistor base current. The total current drawn from the supply is the sum of the load current plus the ground pin current.

AP2210-5.0 Electrical Characteristics ($V_{IN} = 6.0V$, $I_{OUT} = 100\mu A$, $C_{IN} = 1.0\mu F$, $C_{OUT} = 2.2\mu F$, $V_{EN} \ge 2.0V$, $T_{J} = +25^{\circ}C$, **bold** typeface applies over -40°C ≤ $T_{J} \le +125^{\circ}C$ (Note 6), unless otherwise specified.)

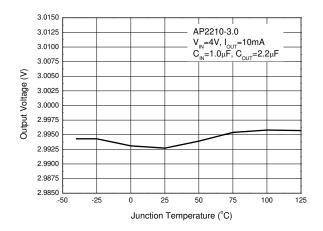
Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
			-1	_	1	0/	
$\Delta V_{OUT}/V_{OUT}$	Output Voltage Accuracy	Variation from specified V _{OUT}	-2	_	2	%	
$\Delta V_{OUT}/\Delta T$	Output Voltage Temperature	-	_	120	-	μV/°C	
(ΔV _{OUT} /V _{OUT})/ΔΤ	Coefficient (Note 7)	_	_	48	-	ppm/°C	
V	l: B l:	V 0.0V to 10.0V	_	1.5	4.5	.,	
V_{RLINE}	Line Regulation	$V_{IN} = 6.0V \text{ to } 13.2V$	_	_	12	mV	
V	Land Daniel Star (Nata 0)	0.4	_	1	6		
V _{RLOAD}	Load Regulation (Note 8)	I _{OUT} = 0.1mA to 300mA	_	_	30	mV	
		100.4	_	15	50		
		I _{OUT} = 100μA	_	_	70		
	Dropout Voltage (Note 9)		_	110	150		
		I _{OUT} = 50mA	_	_	230	mV	
V		I _{OUT} = 100mA	_	140	250		
V_{DROP}			_	_	300		
		I _{OUT} = 150mA	_	165	275		
			_	_	350		
		I _{OUT} = 300mA	_	250	400		
			_	_	500		
		V _{EN} ≤ 0.4V (shutdown)	_	0.01	1		
I _{STD}	Standby Current	V _{EN} ≤ 0.18V (shutdown)	_	_	5	μΑ	
		V > 0.0V 400 A	_	100	150	μA mA	
		V _{EN} ≥ 2.0V, I _{OUT} = 100μA	_	_	180		
		V _{EN} ≥ 2.0V, I _{OUT} = 50mA	_	350	600		
1	Cround Din Comment (Nata 40)		_	_	800		
IGND	Ground Pin Current (Note 10)	$V_{EN} \ge 2.0V$, $I_{OUT} = 150mA$ $V_{EN} \ge 2.0V$, $I_{OUT} = 300mA$	_	1.3	1.9		
			_	_	2.5		
			_	4	10		
			_	_	15		
PSRR	Ripple Rejection	f = 100Hz, I _{OUT} = 100μA	-	75	_	dB	
I _{LIMIT}	Current Limit	V _{OUT} = 0V	_	450	900	mA	

AP2210-5.0 Electrical Characteristics ($V_{IN} = 6.0V$, $I_{OUT} = 100\mu A$, $C_{IN} = 1.0\mu F$, $C_{OUT} = 2.2\mu F$, $V_{EN} \ge 2.0V$, $T_{J} = +25$ °C, bold typeface applies over -40°C ≤ $T_{J} \le +125$ °C (Note 6), unless otherwise specified.)

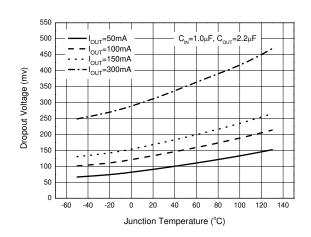
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
e _{no}	Output Noise	I _{OUT} = 50mA, C _{OUT} = 2.2μF, 100pF from BYP to GND	_	260	_	nV/\sqrt{Hz}
.,		Regulator shutdown	_	_	0.4	V
V _{IL}	Enable Input Logic-low Voltage		_	-	0.18	
V_{IH}	Enable Input Logic-high Voltage	Regulator enabled	2.0	-	-	V
	Enable Input Logic-low Current	V _{IL} ≤ 0.4V	-	0.01	1	
I _{ΙL}		V _{IL} ≤ 0.18V	-	-	2	μΑ
	Enable Input Logic-high Current	V _{IL} ≥ 2.0V	-	5	20	
l _{IH}		V _{IL} ≥ 2.0V	-	-	25	μΑ

- 6. Specifications in bold type are limited to -40°C ≤ T_J ≤ +125°C. Limits over temperature are guaranteed by design, but not tested in production.
- 7. Output voltage temperature coefficient is defined as the worst case voltage change divided by the total temperature range.
- 8. Regulation is measured at constant junction temperature using low duty cycle pulse testing. Parts are tested for load regulation in the load range from 0.1mA to 300mA. Changes in output voltage due to heating effects are covered by the thermal regulation specification.
- 9. Dropout voltage is defined as the input to output differential at which the output voltage drops 1% $(T_J = +25^{\circ}C)$ or 2% $(-40^{\circ}C \le T_J \le +125^{\circ}C)$ below its nominal value measured at 1V differential.
- 10. Ground pin current is the regulator quiescent current plus pass transistor base current. The total current drawn from the supply is the sum of the load current plus the ground pin current.

AP2210-ADJ Electrical Characteristics ($V_{IN} = V_{OUT} + 1V$, $I_{OUT} = 100\mu$ A, $C_{IN} = 1.0\mu$ F, $C_{OUT} = 2.2\mu$ F, $V_{EN} ≥ 2.0V$, $T_{J} = +25$ °C, bold typeface applies over -40°C ≤ $T_{J} ≤ +125$ °C (Note 6), unless otherwise specified.)

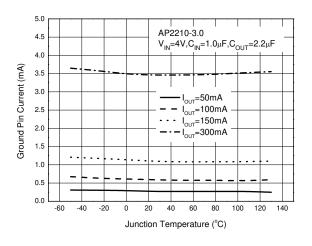

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	Output Voltage Accuracy	Variation from specified V _{OUT}	-1	_	1	.,
$\Delta V_{ m OUT}/V_{ m OUT}$			-2	-	2	%
$\Delta V_{OUT}/\Delta T$	Output Voltage Temperature	_	_	120	_	μV/°C
(ΔV _{ΟυΤ} /V _{ΟυΤ})/ΔΤ	Coefficient (Note 7)	_	_	48	_	ppm/°C
V	Live Develotion	V V 4V += 40.0V	_	1.5	4.5	
V _{RLINE}	Line Regulation	$V_{IN} = V_{OUT} + 1V$ to 13.2V	_	_	12	mV
V	Load Damilation (Nata 0)	0.1 0.00 0	_	1	6	\/
V_{RLOAD}	Load Regulation (Note 8)	$I_{OUT} = 0.1$ mA to 300mA	_	-	30	mV
	Chamallau Current	V _{EN} ≤ 0.4V (shutdown)	_	0.01	1	
I _{STD}	Standby Current	V _{EN} ≤ 0.18V (shutdown)	_	-	5	μΑ
	Ground Pin Current (Note 10)	V _{EN} ≥ 2.0V, I _{OUT} = 100μA	_	100	150	- μA
			_	-	180	
		V _{EN} ≥ 2.0V, I _{OUT} = 50mA	_	350	600	
			_	-	800	
I_{GND}		V _{EN} ≥ 2.0V, I _{OUT} = 150mA	_	1.3	1.9	mA
			-	-	2.5	
		V _{EN} ≥ 2.0V, I _{OUT} = 300mA	_	4	10	
			-	-	15	
PSRR	Ripple Rejection	f = 100Hz, I _{OUT} = 100μA	_	75		dB
I _{LIMIT}	Current Limit	V _{OUT} = 0V	_	450	900	mA
e _{no}	Output Noise	I _{OUT} = 50mA, C _{OUT} = 2.2μF, 100pF from BYP to GND	_	260	_	nV/\sqrt{Hz}
.,			_	-	0.4	.,
V _{IL}	Enable Input Logic-low Voltage	Regulator shutdown	_	_	0.18	V
V _{IH}	Enable Input Logic-high Voltage	Regulator enabled	2.0	-	_	V
	Enable Input Logic-low Current $ V_{IL} \le 0.4V $ $V_{IL} \le 0.18V $	V _{IL} ≤ 0.4V	_	0.01	1	
I _{IL}		V _{IL} ≤ 0.18V	_	-	2	μΑ
	5 11 1 11 11 12 1	V _{IL} ≥ 2.0V	_	5	20	
Іін	Enable Input Logic-high Current	V _{IL} ≥ 2.0V	_	_	25	μΑ

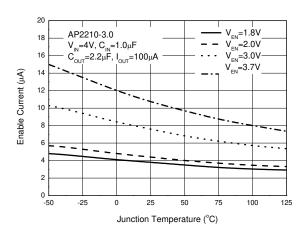
- 6. Specifications in bold type are limited to $-40^{\circ}\text{C} \le T_{\text{J}} \le +125^{\circ}\text{C}$. Limits over temperature are guaranteed by design, but not tested in production.
- 7. Output voltage temperature coefficient is defined as the worst case voltage change divided by the total temperature range.
- 8. Regulation is measured at constant junction temperature using low duty cycle pulse testing. Parts are tested for load regulation in the load range from 0.1mA to 300mA. Changes in output voltage due to heating effects are covered by the thermal regulation specification.
- 10. Ground pin current is the regulator quiescent current plus pass transistor base current. The total current drawn from the supply is the sum of the load current plus the ground pin current.

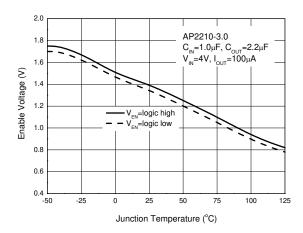


Performance Characteristics

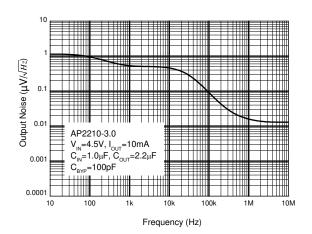

Output Voltage vs. Junction Temperature

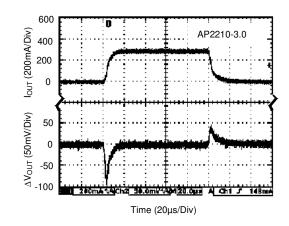

Dropout Voltage vs. Junction Temperature


Ground Pin Current vs. Output Current

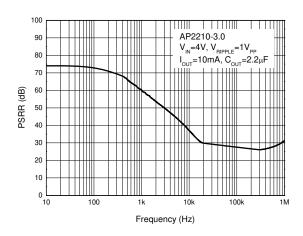

Ground Pin Current vs. Junction Temperature

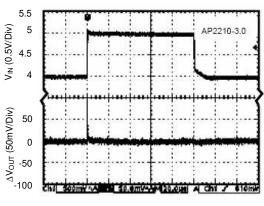
Enable Current vs. Junction Temperature


Enable Voltage vs. Junction Temperature

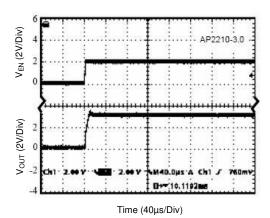


Performance Characteristics (Cont.)

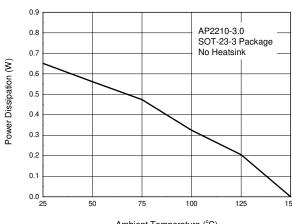

Output Noise vs. Frequency


 $\label{eq:lower} Load\ Transient$ (Conditions: V_IN = 4V, V_EN = 2V, I_{OUT} = 10mA to 300mA, C_IN = 1.0 \mu F, C_{OUT} = 2.2 \mu F)

PSRR vs. Frequency



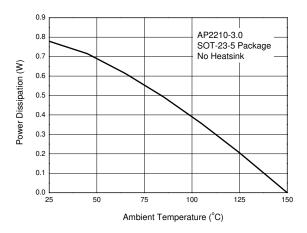
 $\label{eq:line_line} Line Transient $$ (Conditions: V_{IN} = 4 to 5V, V_{EN} = 2V, \\ I_{OUT} = 1mA, C_{OUT} = 2.2 \mu F) $$$



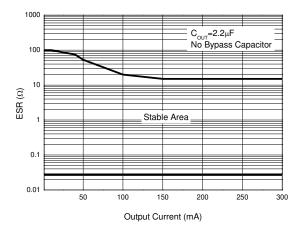
Time (20µs/Div)

 $V_{EN} \ vs. \ V_{OUT}$ (Conditions: $V_{EN}=0$ to 2V, $V_{IN}=4V$, $I_{OUT}=30mA$, $C_{IN}=1.0\mu F$, $C_{OUT}=2.2\mu F$)

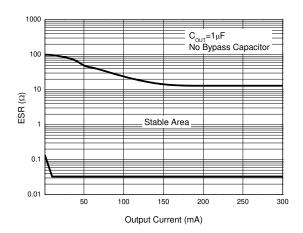
Power Dissipation vs. Ambient Temperature

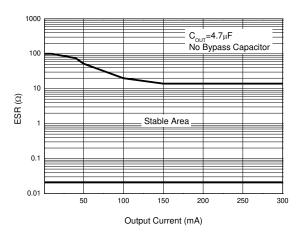


Ambient Temperature (°C)



Performance Characteristics (Cont.)


Power Dissipation vs. Ambient Temperature


ESR vs. Output Current

ESR vs. Output Current

ESR vs. Output Current

Application Information

Input Capacitor

A $1\mu F$ minimum capacitor is recommended to be placed between V_{IN} and GND.

Output Capacitor

It is required to prevent oscillation. $1.0\mu F$ minimum is recommended when C_{BYP} is unused. $2.2\mu F$ minimum is recommended when C_{BYP} is 100pF. The output capacitor may be increased to improve transient response.

Noise Bypass Capacitor

Bypass capacitor is connected to the internal voltage reference. A small capacitor connected from BYP to GND make this reference quiet, resulting in a significant reduction in output noise, but the ESR stable area will be narrowed. In order to keep the output stability, it is recommended to use the bypass capacitor no more than 100pF.

The start-up speed of the AP2210 is inversely proportional to the value of reference bypass capacitor. In some cases, if output noise is not a major concern and rapid turn-on is necessary, omit C_{BYP} and leave BYP open.

Power Dissipation

Thermal shutdown may take place if exceeding the maximum power dissipation in application. Under all possible operating conditions, the junction temperature must be within the range specified under absolute maximum ratings to avoid thermal shutdown.

To determine if the power dissipated in the regulator reaches the maximum power dissipation (see Figure Power Dissipation vs. Ambient Temperature and Figure ESR vs. Output Current in Page 22), using:

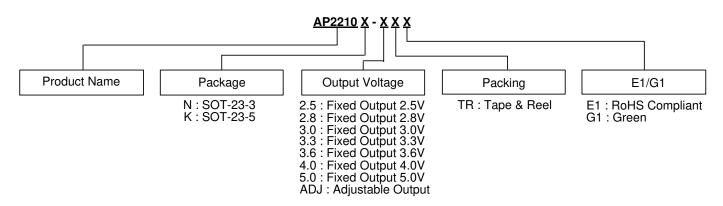
$$T_J = P_D^* \theta_{JA} + T_A$$

 $P_D = (V_{IN} - V_{OUT})^* I_{OUT} + V_{IN}^* I_{GND}$

Where: $T_J \le T_{J(max)}$, $T_{J(max)}$ is absolute maximum ratings for the junction temperature; $V_{IN}^*I_{GND}$ can be ignored due to its small value.

T_{J(max)} is +150°C, θ_{JA} is 200°C/W, no heatsink is required since the package alone will dissipate enough heat to satisfy these requirements unless the calculated value for power dissipation exceeds the limit.

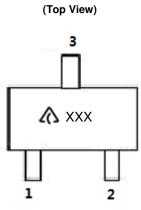
Example (3.0V version):


 $I_{OUT} = 300 \text{mA}$, $T_A = +50^{\circ}\text{C}$, $V_{IN(Max)}$ is:

 $(150^{\circ}C-50^{\circ}C)/(0.3A*200^{\circ}C/W)+3.0V=4.67V$

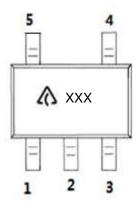
Therefore, for good performance, please make sure that input voltage is less than 4.67V without heatsink when $T_A = +50^{\circ}$ C.

Ordering Information


		age Temperature Range	Part Number		Marking ID		
	Package		RoHS Complicant	Green	RoHS Complicant	Green	Packing
			AP2210N-2.8TRE1 (Note 11)	AP2210N-2.8TRG1	EH3	GH3	3000/Tape & Reel
			AP2210N-3.0TRE1 (Note 11)	AP2210N-3.0TRG1	EH4	GH4	3000/Tape & Reel
Lead-Free			AP2210N-3.3TRE1 (Note 11)	AP2210N-3.3TRG1	EH5	GH5	3000/Tape & Reel
(Pb)	SOT-23-3	-40°C to +85°C	_	AP2210N-3.6TRG1	_	GB7	3000/Tape & Reel
Lead-free Green			_	AP2210N-4.0TRG1	_	GC7	3000/Tape & Reel
			_	AP2210N-5.0TRG1	-	GH9	3000/Tape & Reel
		T-23-5 -40°C to +85°C	AP2210K-2.5TRE1 (Note 11)	_	E5C	-	3000/Tape & Reel
			AP2210K-2.8TRE1 (Note 11)	AP2210K-2.8TRG1	E5F	G5F	3000/Tape & Reel
			AP2210K-3.0TRE1 (Note 11)	AP2210K-3.0TRG1	E5H	G5H	3000/Tape & Reel
Lead-Free			AP2210K-3.3TRE1 (Note 11)	AP2210K-3.3TRG1	E5K	G5K	3000/Tape & Reel
Lead-free Green	SOT-23-5		_	AP2210K-3.6TRG1	-	G5I	3000/Tape & Reel
			_	AP2210K-4.0TRG1	-	G5J	3000/Tape & Reel
			_	AP2210K-5.0TRG1	_	G5L	3000/Tape & Reel
			-	AP2210K-ADJTRG1	-	G5M	3000/Tape & Reel

Note 11: Not recommended for new design.

Marking Information


(1) SOT-23-3

: Logo XXX: Marking ID (See Ordering Information)

(2) SOT-23-5

: Logo XXX: Marking ID (See Ordering Information)