

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

OBSOLETE

Data Sheet

Single Phase Synchronous Buck PWM Controller

AP3581A/B/C

General Description

The AP3581A/B/C is a compact synchronous-rect ified buck controller specifically designed to operate from 5V/12V supply and deliver high-quality output voltage as low as 0.6V (AP3581A) or 0.8V (AP3581B/C). The AP3581A/B/C operates at fixed frequency of 300kHz (AP3581A/B) or 200kHz (AP3581C) and provides an optimal level of integration to reduce size and cost of the power supply.

This controller integrates internal MOSFET drivers that support 12V+12V bootstrapped voltage for high-efficiency power conversion. The bootstrap diode is built-in to simplify the circuit design and minimize external part count.

This controller provides single feedback loop, voltage-mode control with fast transient response. The error amplifier features a 10MHz gain-bandwidth product and $6V/\mu s$ slew rate which enables high converter bandwidth for fast transient performance.

Other features include internal soft-start, under voltage protection, over current protection and shutdown function. With afore-mentioned functions, this part provides customers a compact, high efficiency, well-protected and cost-effective solutions.

The AP3581A/B/C is available in PSOP-8 package.

Features

- Supply Voltage: 5V/12V
 V_{IN} Input Range: 3.0V to 13.2V
 0.6V/0.8V to 80% of V_{IN} Output Range Internal Reference: 0.6V/0.8V
- Simple Single-loop Control Voltage-mode PWM Control Duty Cycle: 0% to 80% Fast Transient Response
- 10MHz High-bandwidth Error Amplifier with 6V/µs Slew Rate
- Fixed Oscillator Frequency: 300kHz/200kHz
- Lossless, Programmable Over Current Protection (Uses Lower MOSFET R_{DS(ON)})
- Start-up into Pre-biased Output
- Built-in Thermal Shutdown
- Built-in Soft-start
- Over Current/Voltage Protection
- Under Voltage Protection
- Integrated Boot Diode

Applications

- Power Supplies for Microprocessors/Peripherals PCs, Embedded Controllers, Memory Supplies DSP and Core Communications Processor Supplies
- Subsystem Power Supplies
 PCI, AGP, Graphics Cards, Digital TV
 SSTL-2 and DDR/2/3 SDRAM Bus Termination
 Supply
- Cable Modems, Set Top Boxes, and DSL Modems
- Industrial Power Supplies and General Purpose Supplies
- 5V/12V Input DC-DC Regulators
- Low-voltage Distributed Power Supplies

Figure 1. Package Type of AP3581A/B/C

AP3581A/B/C

Pin Configuration

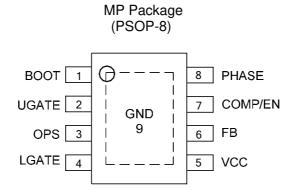


Figure 2. Pin Configuration of AP3581A/B/C (Top View)

Pin Description

Pin Number	Pin Name	Function					
1	ВООТ	Bootstrap pin. Connect a bootstrap capacitor (Typically fr $0.1\mu F$ to $0.47\mu F$) from this pin to PHASE pin to create a BO voltage suitable to drive a standard N-Channel MOSFET					
2	UGATE	Upper-gate drive pin. Connect this pin to the upper MOSFET gate providing the gate drive. This pin is monitored by the adaptive shoot-through protection circuitry to determine when the upper MOSFET has been turned off					
3	OPS	Over-current setting pin. Connecting a resistor (R_{OCSET}) between OPS and GND to set the over-current trigger point					
4	LGATE	Lower-gate drive pin. Connect LGATE to the lower MOSFET gate providing the gate drive for the lower MOSFET. This pin is monitored by the adaptive shoot-through protection circuitry to determine when the lower MOSFET has turned off					
5	VCC	Bias supply pin. Provides a 5V or 12V bias supply for the chip from this pin. The pin should be bypassed with a capacitor to GND					
6	FB	Feedback pin. This pin is the inverting input of the internal error amplifier. Use FB pin, in combination with the COMP pin, to compensate the voltage control feedback loop of the converter. A resistor divider from output to GND is used to set the output voltage					
7	COMP/EN	Compensation and disable pin, this pin is the output of the error amplifier. Pull COMP pin low will shut down the IC					
8	PHASE	PHASE pin. This pin connects to the source of the upper MOSFET and the drain of the lower MOSFET. This pin is also monitored by the adaptive shoot-through protection circuitry to determine when the upper MOSFET has turned off					
9	GND	Exposed pad as ground pin. Represents the signal and power ground for the IC. Tie this pin to the ground island/plane through the lowest impedance connection available					

AP3581A/B/C

Functional Block Diagram

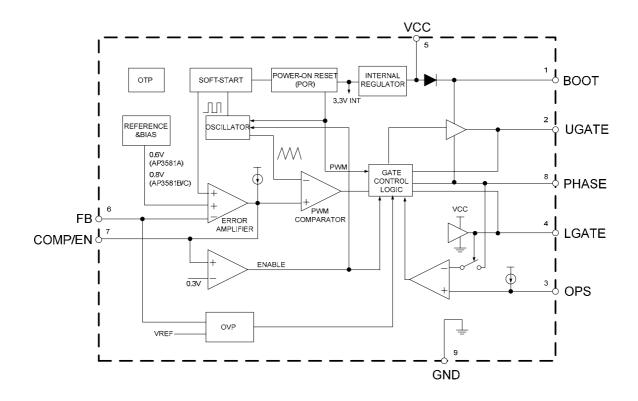
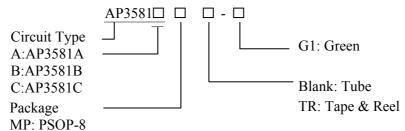



Figure 3. Functional Block Diagram of AP3581A/B/C

Ordering Information

Package	Temperature Range	Part Number	Marking ID	Packing Type	
PSOP-8	-40 to 85°C	AP3581AMP-G1	3581AMP-G1	Tube	
		AP3581AMPTR-G1	3581AMP-G1	Tape & Reel	
		AP3581BMP-G1	3581BMP-G1	Tube	
		AP3581BMPTR-G1	3581BMP-G1	Tape & Reel	
		AP3581CMP-G1	3581CMP-G1	Tube	
		AP3581CMPTR-G1	3581CMP-G1	Tape & Reel	

BCD Semiconductor's Pb-free products, as designated with "G1" suffix in the part number, are RoHS compliant and green.

AP3581A/B/C

Absolute Maximum Ratings (Note 1)

Parameter	Symbol	Value	Unit
Supply Voltage	V_{CC}	-0.3 to 15	V
BOOT Voltage	V_{BOOT}	-0.3 to V _{PHASE} +15	V
Voltage from UGATE to PHASE	V_{UGATE}	-0.3 to 15	V
Voltage from PHASE, LGATE Pin to GND	$V_{ m PHASE}, \ V_{ m LGATE}$	-1 to 15	V
Voltage on Other Separate Pin		-0.3 to 6	V
Thermal Resistance	θ_{JA}	50	°C/W
Operating Junction Temperature	T_{J}	-40 to 125	°C
Storage Temperature	T_{STG}	-65 to 150	°C
Lead Temperature (Soldering, 10 sec)	T_{LEAD}	260	°C
ESD (Human Body Model) (Note 2)		2000	V
ESD (Machine Model) (Note 2)		200	V

Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

Note 2: Devices are ESD sensitive. Handling precaution recommended.

Recommended Operating Conditions

Parameter	Symbol	Min	Max	Unit
Supply Input Voltage	V_{CC}	4.5	13.2	V
Operating Junction Temperature Range	T_{J}	-40	125	°C
Operating Ambient Temperature	T_{A}	-40	85	°C

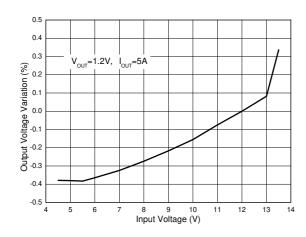
AP3581A/B/C

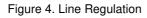
Electrical Characteristics

 V_{CC} =12V, T_A =25°C, unless otherwise specified.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
SUPPLY INPUT						
Supply Voltage	V _{CC}		4.5		13.2	V
Supply Current	I_{CC}	UGATE and LGATE Pin Open; V _{CC} =12V, Switching		5		mA
Quiescent Supply Current	I_{CC_Q}	V _{FB} =V _{REF} +0.1V, No Switching		4		mA
Power Input Voltage	V_{IN}		3.0		13.2	V
POWER ON RESET						
V _{CC} Rising Threshold	V_{POR}	V _{CC} Rising	4.0	4.2	4.4	V
V _{CC} Threshold Hysteresis	V_{POR_HYS}			500		mV
OSCILLATOR				l		
O Illator Francisco	$f_{ m OSC}$	AP3581A/B	270	300	330	kHz
Oscillator Frequency		AP3581C	180	200	220	
Ramp Amplitude	ΔV_{OSC}	V _{CC} =12V		1.8		V
ERROR AMPLIFIER				l		
Open Loop DC Gain (Note 3)	G_{DC_OL}		55	70		dB
Gain Bandwidth (Note 3)	G_{BW}			10		MHz
Slew Rate (Note 3)	SR		3	6		V/µs
Transconductance				800	1100	μA/V
Output Source Current		$V_{FB} < V_{REF}$	80	120		μΑ
Output Sink Current		$V_{FB} > V_{REF}$	80	120		μΑ
PWM CONTROLLER GATE DRIVER	RS					
Upper Gate Source Current	I_{UG_SRC}	V_{BOOT} - V_{PHASE} =12V, V_{BOOT} - V_{UGATE} =6V		-1		A
Upper Gate Sink Current	I_{UG_SNK}	V_{BOOT} - V_{PHASE} =12V, V_{BOOT} - V_{UGATE} =6V		1.5		A
Upper Gate Sink Resistance	R_{UGATE}	50mA Sink Current, V _{BOOT} -V _{PHASE} =12V		1.6	3.2	Ω
Lower Gate Source Current	I_{LG_SRC}	V _{CC} -V _{LGATE} =6V		-1		A
Lower Gate Sink Current	I_{LG_SNK}	V _{LGATE} =6V		1.5		A
Lower Gate Sink Resistance	R _{LGATE}	50mA Sink Current, V _{CC} =12V		1	2	Ω
PHASE Falling to LGATE Rising Delay		V_{PHASE} <1.2V to V_{LGATE} >1.2V		50		ns

AP3581A/B/C


Electrical Characteristics (Continued)


 V_{CC} =12V, T_A =25°C, unless otherwise specified.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
LGATE Falling to UGATE Rising		V_{LGATE} < 1.2V to		50		ns
Delay		$(V_{UGATE}-V_{PHASE})>1.2V$		30		113
Minimum Duty Cycle				0		%
Maximum Duty Cycle			75	80	85	%
REFERENCE VOLTAGE				•		
Feedback Voltage	$ m V_{FB}$	AP3581A	0.591	0.6	0.609	V
		AP3581B/C	0.788	0.8	0.812	V
PROTECTION				•		
Under Voltage Protection	V_{FB_UVP}		0.3	0.4	0.5	V
Over Current Source	I_{OPS}		30	40	50	μΑ
	t _{SS}	AP3581A		2.0		
Soft-start Interval		AP3581B		2.7		ms
		AP3581C		3.6		
Enable Threshold	V _{COMP/EN}		0.25	0.30	0.35	V
Thermal Shutdown	T_{OTSD}			160		°C
Thermal Shutdown Hysteresis	T_{HYS}			20		°C

Note 3: Not tested, guaranteed by design.

Typical Performance Characteristics

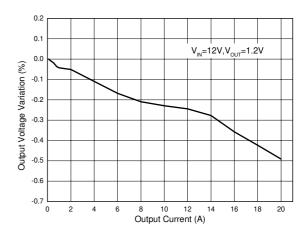
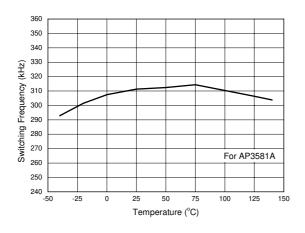



Figure 5. Load Regulation

AP3581A/B/C

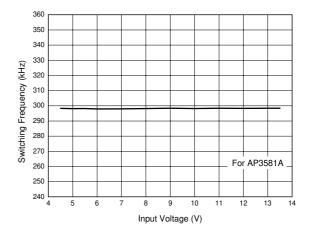
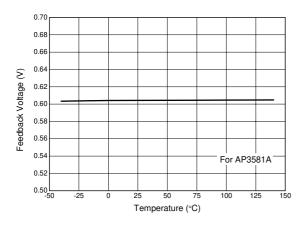
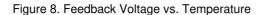




Figure 6. Switching Frequency vs. Temperature

Figure 7. Switching Frequency vs. Input Voltage

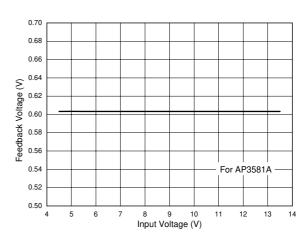


Figure 9. Feedback Voltage vs. Input Voltage

AP3581A/B/C

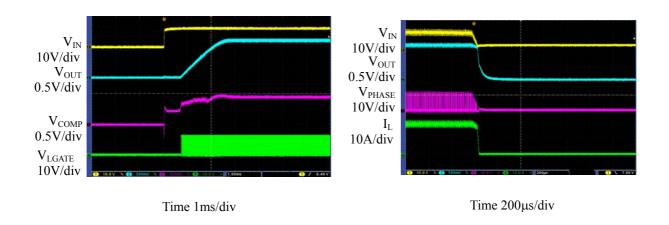


Figure 10. Power-on Waveform $(V_{IN}=12V, V_{OUT}=1.2V, I_{OUT}=0A)$

Figure 11. Power-off Waveform $(V_{IN}=12V, V_{OUT}=1.2V, I_{OUT}=20A)$

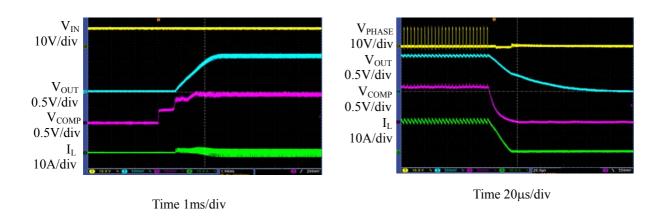


Figure 12. Enable Waveform $(V_{IN}=12V, V_{OUT}=1.2V, I_{OUT}=0A)$

Figure 13. Disable Waveform (V_{IN}=12V, V_{OUT}=1.2V, I_{OUT}=20A)

AP3581A/B/C

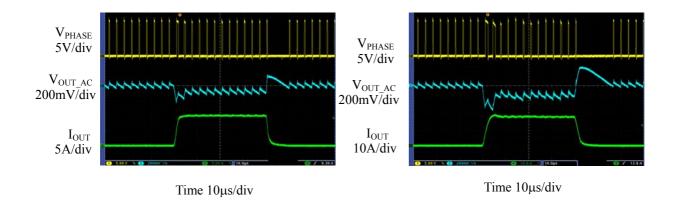


Figure 14. Load Transient Response (V_{IN} =12V, V_{OUT} =1.2V, I_{OUT} =0A to 10A)

Figure 15. Load Transient Response (V_{IN}=12V, V_{OUT}=1.2V, I_{OUT}=0A to 20A)

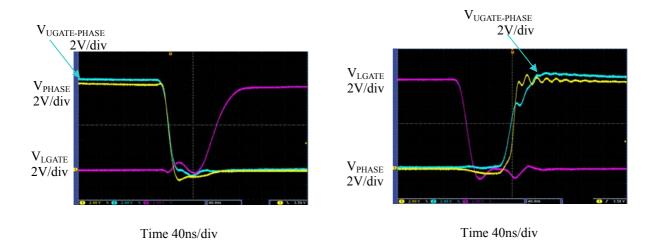
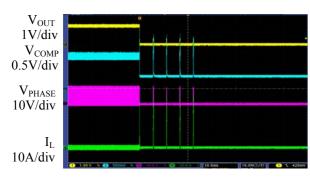
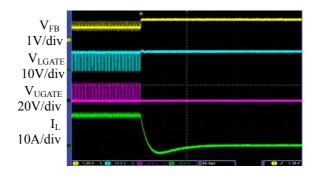



Figure 16. UGATE Turn Off Waveforms (V_{CC}=V_{IN}=12V, V_{OUT}=1.2V, I_{OUT}=20A)


Figure 17. UGATE Turn On Waveforms $(V_{CC}=V_{IN}=12V, V_{OUT}=1.2V, I_{OUT}=20A)$

AP3581A/B/C

Time 10ms/div

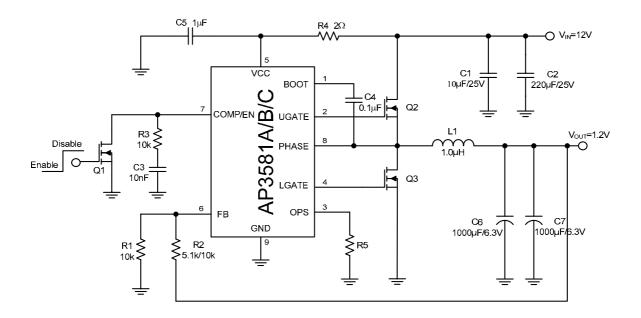
Time 80µs/div

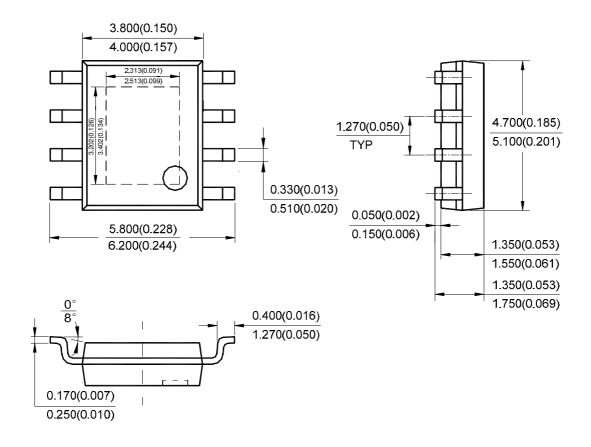
Figure 18. Over Current Protection $(V_{IN}=12V, V_{OUT}=1.2V \text{ to } 0V, I_{OUT}=0A)$

Figure 19. Over Voltage Protection $(V_{IN}=12V, V_{OUT}=1.2V, I_{OUT}=20A)$

AP3581A/B/C

Typical Application




Figure 20. Typical Application Circuit of AP3581A/B/C

AP3581A/B/C

Mechanical Dimensions

PSOP-8 Unit: mm(inch)

Note: Eject hole, oriented hole and mold mark is optional.

BCD Semiconductor Manufacturing Limited

http://www.bcdsemi.com

IMPORTANT NOTICE

BCD Semiconductor Manufacturing Limited reserves the right to make changes without further notice to any products or specifications herein. BCD Semiconductor Manufacturing Limited does not assume any responsibility for use of any its products for any particular purpose, nor does BCD Semiconductor Manufacturing Limited assume any liability arising out of the application or use of any its products or circuits. BCD Semiconductor Manufacturing Limited does not convey any license under its patent rights or other rights nor the rights of others.

MAIN SITE

- Headquarters

BCD Semiconductor Manufacturing Limited

No. 1600, Zi Xing Road, Shanghai ZiZhu Science-based Industrial Park, 200241, China Tel: +86-21-24162266, Fax: +86-21-24162277

REGIONAL SALES OFFICE

Shenzhen Office

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd., Shenzhen Office Unit A Room 1203, Skyworth Bldg., Gaoxin Ave.1.S., Nanshan District, Shenzhen,

China Tel: +86-755-8826 7951 Fax: +86-755-8826 7865 - Wafer Fab

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd. 800 Yi Shan Road, Shanghai 200233, China Tel: +86-21-6485 1491, Fax: +86-21-5450 0008

Taiwan Office

BCD Semiconductor (Taiwan) Company Limited 4F, 298-1, Rui Guang Road, Nei-Hu District, Taipei,

Taiwan Tel: +886-2-2656 2808 Fax: +886-2-2656 2806

USA Office BCD Semiconductor Corp. 30920 Huntwood Ave. Hayward, CA 94544, USA Tel: +1-510-324-2988 Fax: +1-510-324-2788