

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

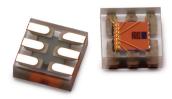
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



APDS-9250

Digital RGB, IR and Ambient Light Sensor

Data Sheet

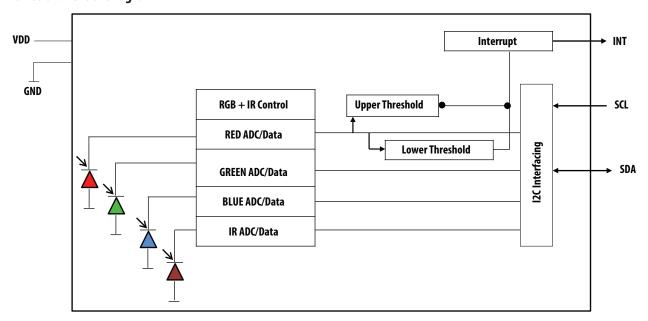
Description

The APDS-9250 device uses 4 individual channels of red, green, blue, and IR (RGB+IR) in a specially designed matrix arrangement. This allows the device to have optimal angular response and accurate RGB spectral response with high lux accuracy over various light sources. APDS-9250 supports the I²C interface and has a programmable interrupt controller that frees up micro-controller resources.

The device detects light intensity under a variety of lighting conditions and through a variety of attenuation materials, including dark glass. APDS-9250 could be configured as Ambient Light Sensor and RGB+IR Sensor. The color-sensing feature is useful in applications such as LED RGB backlight control, solid-state lighting, reflected LED color sampler, or fluorescent light color temperature detection. The integrated IR blocking filter makes this device an excellent ambient light sensor and color temperature monitor sensor together with the temperature compensation that allows output to have less variation over the temperature.

Ordering Information

Part Number	Packaging	Quantity	
APDS-9250	Tape & Reel	5000 per reel	


Features

- Colour and Ambient Light Sensing (CS-RGB and ALS)
 - Accuracy of Correlated Color Temperature (CCT)
 - Individual channels for Red, Green, Blue and Infared
 - Approximates Human Eye Response with Green Channel
 - Red, Green, Blue, Infrared and ALS Sensing
 - High Sensitivity in low lux condition Ideally suited for Operation Behind Dark Glass
 - Wide Dynamic Range: 18,000,000: 1
 - Up to 20-Bit Resolution
- Power Management
 - Low Active Current 130 μA typical
 - Low Standby Current 1μA typical
- I²C-bus Fast Mode Compatible Interface
 - Up to 400 kHz (I²C Fast-Mode)
 - Dedicated Interrupt Pin
- Small Package L 2.0 × W 2.0 × H 0.65 mm

Applications

- OLED Display Control
- RGB LED Backlight Control
- Ambient Light Color Temperature Sensing

Functional Block Diagram

Description:

The APDS-9250 device contains multiple photodiodes for Light Sensor (R, G, B, IR channel) that are designed in a matrix placement to achieve optimal angular response at the fall of incident light angle.

The device provides on-chip multiple diodes, ADCs, state machine, non-volatile memory and an I²C interface.

Integration of all color sensing channels occurs simultaneously. Upon completion of the conversion cycle, the conversion result is transferred to the corresponding data registers. Communication with the device is accomplished through a fast (up to 400 kHz), two-wire I²C serial bus for easy connection to a microcontroller or embedded controller.

The APDS-9250 provides a separate pin for interrupts. When interrupts are enabled and a preset value is exceeded, the interrupt pin is asserted and remains asserted until cleared by the controlling firmware. The interrupt feature simplifies and improves system efficiency by eliminating the need to poll a sensor for a light intensity. An interrupt is generated after completion of new conversion of the light sensor channels where the light sensor interrupt source can work on any of the Red, Green, Blue, IR channels. Additionally, a programmable interrupt persistence feature allows the user to determine how many consecutive exceeded thresholds are necessary to trigger an interrupt.

I/O Pins Configuration

Pin	Name	Туре	Description
1	SCL	I	I ² C Serial Clock Input Terminal – Clock Signal for I ² C Serial Data
2	SDA	I/O	Serial Data I/O for I ² C
3	VDD	Supply	Power Supply Voltage
4	INT	0	Interrupt – Open Drain
5	NC		No Connect
6	GND	Ground	Power Supply Ground. All Voltages are referenced to GND

Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)†

Parameter	Symbol	Min.	Max.	Units	Conditions
Power Supply Voltage [1]	V_{DD}		3.8	V	
Max Voltage on SCL, SDA, INT pads	V_{I2C}	-0.5	3.8	V	
Storage Temperature Range	T _{stq}	-40	85	°C	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Note 1. All voltages are with respect to GND.

Recommended Operating Conditions

Parameter	Symbol	Min.	Тур.	Max.	Units
Operating Ambient Temperature	T _A	-40		85	°C
Supply voltage	V_{DD}	1.7		3.6	V
Supply Voltage Accuracy, V _{DD}		-3		3	%
total error including transients					

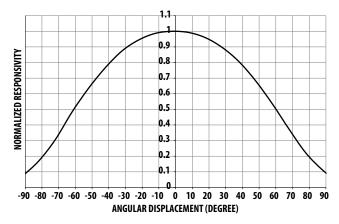
Operating Characteristics, $V_{DD} = 2.8 \text{ V}$, $T_A = 25^{\circ}\text{C}$ (unless otherwise noted)

Parameter	Symbol	Min	Тур	Max	Units	Test Conditions
Active Mode Current	I_{CS}		130		μΑ	V _{DD} =2.8V, Gain Mode 3
Standby Current	I _{STBY}		1	2	μΑ	In Standby Mode. No active I ² C communication
SCL, SDA Input High Voltage	V _{IH}	1.5		V_{DD}	V	
SCL, SDA Input Low Voltage	V _{IL}	0		0.4	V	
V _{OL} INT, Output Low Voltage	V _{OL}	0		0.4	V	
I _{LEAK} Leakage Current, SDA, SCL, INT Pins	I _{LEAK}	-5		5	μΑ	

Optical Characteristics, $V_{DD} = 2.8 \text{ V}$, $T_A = 25^{\circ}\text{C}$ (unless otherwise noted)

	Test		Test RED Channel		Green Channel		Blue Channel		IR Channel	
Parameter	Condition	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Irradiance	λ = 465	0	5	6	17	80	120	0	4	%
Response	λ = 525	3	10	80	120	10	30	0	3	-
	λ = 625	80	120	18	33	0	3	0	3	-
	λ = 850	0	3	0	3	0	3	80	120	-

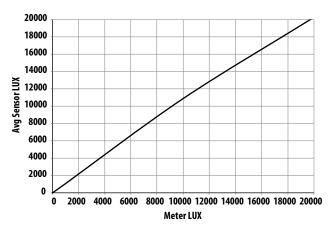
Notes:


- 1. The percentage shown represents the ratio of the respective red, green, or blue channel value to the IR channel value.
- 2. The 465 nm input irradiance is supplied by an InGaN light-emitting diode with the following characteristics: dominant wavelength $_D$ = 465 nm, spectral halfwidth $_1$ /2 = 22 nm.
- 3. The 525 nm input irradiance is supplied by an InGaN light-emitting diode with the following characteristics: dominant wavelength $_D$ = 525 nm, spectral halfwidth $_1$ /2 = 35 nm.
- 4. The 625 nm input irradiance is supplied by a AllnGaP light-emitting diode with the following characteristics: dominant wavelength _D = 625 nm, spectral halfwidth __1/2 = 15 nm.
- 5. The 850 nm input irradiance is supplied by a AllnGaP light-emitting diode with the following characteristics: dominant wavelength $_{\rm D}$ = 850 nm, spectral halfwidth $_{\rm L}$ $_{\rm 1/2}$ = 40 nm.

RGB Characteristics, $V_{DD} = 2.8 \text{ V}$, $T_A = 25^{\circ}\text{C}$ (unless otherwise noted)

Parameter	Min.	Тур.	Max.	Units	Test Conditions
Dark Count	0		3	counts	
ADC Integration Time	2.97	3.125	3.28	ms	
Full Scale ADC Counts Per Step		8192		counts	13 bit
Full Scale ADC Count Value			262,143	counts	18 bit, 100ms, G=1x

ALS Characteristics, $V_{DD} = 2.8 \text{ V}$, $T_A = 25^{\circ}\text{C}$ (unless otherwise noted)


Parameter	Symbol	Min	Тур	Max	Units	Test Conditions
Peak Wavelength	λ_{P}		550		nm	
Min Integration Time	T _{intmin1}		3.125	3.125		
	T _{intmin2}		50		ms	With 50/60Hz rejection
Max Integration Time	T _{intmax}		400		ms	With 50/60Hz rejection
Output Resolution	RES _{ALS}	13	18	18 20		Programmable
ADC Count Value			1000		count	λ = 530nm, 50ms, Gain=3x, Ee=59uW/cm ²

0.9 --- RED 0.8 **GREEN** RELATIVE RESPONSE 9.0 9.0 8.0 9.0 BLUE 0.2 0.1 300 400 1100 500 600 700 800 900 1000 WAVELENGTH (nm)

Figure 1. Normalized ALS PD Angular Response

Figure 2. Normalized PD Spectral Response

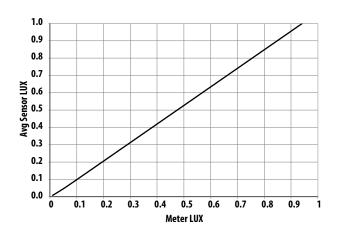


Figure 3. ALS Sensor LUX vs Meter LUX using White Light

Figure 4. ALS Sensor LUX vs Meter LUX using White Light

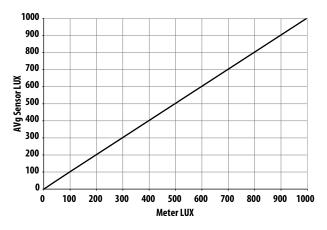


Figure 5. ALS Sensor LUX vs Meter LUX using Incandescent Light

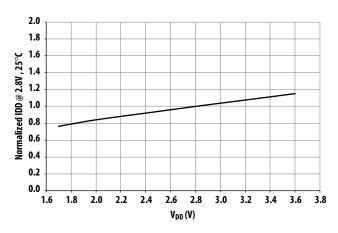


Figure 6. Normalized IDD vs VDD

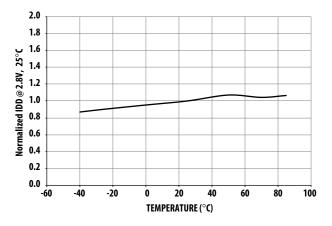


Figure 7. Normalized IDD vs Temperature

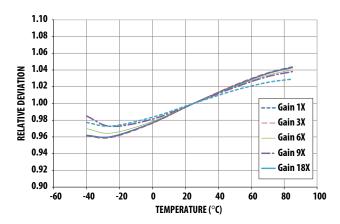
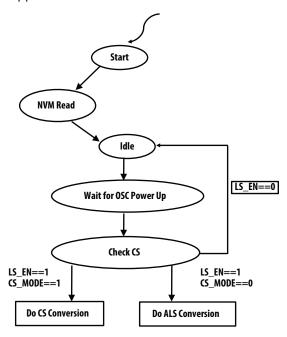


Figure 8. ALS vs Temperature @ 1000 LUX (White LED)

System State Machine


Start Up after Power-On or Software Reset

The main state machine is set to "Start State" during power-on or software reset. As soon as the reset is released, the internal oscillator is started and the programmed I²C address and the trim values are read from the internal non volatile memory (NVM) trimming data block. The device enters Standby Mode as soon as the Idle State is reached.

NOTE: As long as the I²C address has not yet been read, the device will respond with NACK to any I²C command and ignore any request to avoid responding to a wrong I²C address.

Standby Mode

Standby Mode is the default mode after power-up. In this state, the oscillator, all internal support blocks, and the ADCs are switched off but I²C communication is fully supported.

Light Sensor Operation

Light Sensor (LS) measurements can be activated by setting the LS_EN bit to 1 in the MAIN_CTRL register.

In Light Sensor mode the user can select to activate either ALS or CS operation mode. ALS mode is activated by setting CS_Mode bit to 0 while CS mode is activated by CS_Mode bit set to 1 in the MAIN_CTRL register.

As soon as Light Sensor become activated through I²C command, the internal support blocks are powered on. Once the voltages and currents are settled (typically after 5ms), the state machine checks for trigger events from a measurement scheduler to start the LS conversions according to the selected measurement repeat rates.

Once LS_EN is changed back to 0, a conversion running on the respective sensor will be completed and the relevant ADCs and support blocks will move to standby mode thereafter.

Light Sensor Interrupt

The LS interrupt is enabled by LS_INT_EN=1. It can function as either threshold triggered (LS_VAR_MODE=0) or variance trigged (LS_VAR_MODE=1). The LS interrupt source generator can work on any of the four LS channels (R, G, B, IR). The LS interrupt source is selected by the LS_INT_SEL bits in the INT_CFG register.

The Light Sensor threshold interrupt is enabled with LS_INT_EN = 1 and LS_VAR_MODE = 0. It is set when the data of the selected LS_DATA input register (LS_RED, LS_GREEN, LS_BLUE, LS_IR) is above the upper or below the lower threshold for a specified number of consecutive measurements.

The Light Sensor variance interrupt is enabled with LS_INT_EN = 1 and LS_VAR_MODE = 1. It is set when the absolute value of the difference between the previous and current LS_DATA data value is above the decoded LS variance threshold for a specified number of consecutive measurements.

I²C Protocol

Interface and control of the APDS-9250 is accomplished through an I²C serial compatible interface (standard or fast mode) to a set of registers that provide access to device control functions and output data. The device supports a single slave address of 0x52 hex using 7 bit addressing protocol. (Contact factory for other addressing options.)

I²C Register Read

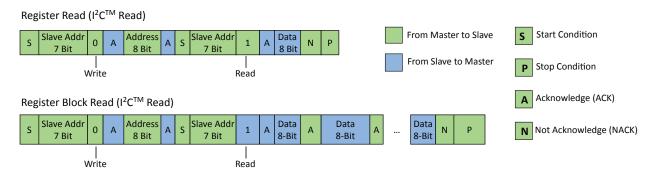
The registers can be read individually or in block read mode. When two or more bytes are read in block read mode, reserved register addresses are skipped and the next valid address is referenced. If the last valid address has been reached, but the master continues with the block read, the address counter in the device will not roll over and the device returns 00HEX for every subsequent byte read.

The block read operation is the only way to ensure correct data read out of multi-byte registers and to avoid splitting of results with HIGH and LOW bytes originating from different conversions. During block read access on LS and PS result registers, the result update is blocked.

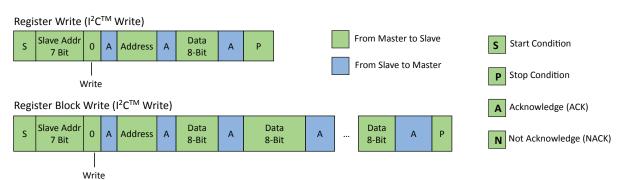
If a read access is started on an address belonging to a non-readable register, the device will return NACK until the I^2C^{TM} operation is ended.

Read operations must follow the timing diagram shown below.

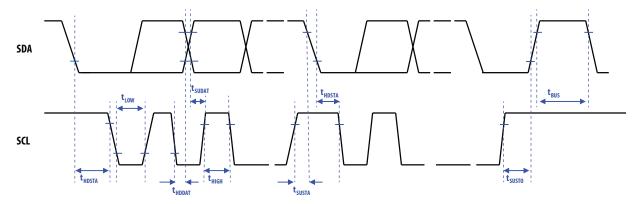
I²C Register Write


The device registers can be written to individually or in block write mode. When two or more bytes are written in block write mode, reserved registers and read-only registers are skipped. The transmitted data is automatically applied to the next writable register. If a register includes read (R) and read/write (RW) bits, the register is not skipped. Data written to read-only bits are ignored.

If the last valid address of the device address range is reached but the master attempts to continue the block write operation, the address counter of the device will not roll over. The device will return NACK for every following byte sent by the master until the I^2C^{TM} operation is ended.


If a write access is started on an address belonging to a non-writeable register, the device will return NACK until the I^2C^{TM} operation is ended.

Write operations must follow the timing diagram shown below.


I²C Register Read Timing Diagram

I²C Register Write Timing Diagram

I²C Interface – Bus Timing

Bus Timing Characteristics

Parameter	Symbol	Standard Mode	Fast Mode	Units
Maximum SCL Clock Frequency	f_{SCL}	100	400	kHz
Minimum START Condition Hold Time Relative to SCL Edge	t _{DSTA}	4		μs
Minimum SCL Clock Low Width	t_{LOW}	4.7		μs
Minimum SCL Clock High Width	t _{HIGH}	4		μs
Minimum START Condition Setup Time Relative to SCL Edge	t _{SUSTA}	4.7		μs
Minimum Data Hold Time on SDA Relative to SCL Edge	t _{HDDAT}	0		μs
Minimum Data Setup Time on SDA Relative to SCL Edge	t _{SUDAT}	0.1	0.1	μs
Minimum STOP Condition Setup Time on SCL	t _{SUSTO}	4		μs
Minimum Bus Free Time Between Stope Condition and Start Condition	t _{BUS}	4.7		μs

Register set:

The APDS-9250 is controlled and monitored by data registers and a command register accessed through the serial interface. These registers provide for a variety of control functions and can be read to determine results of the ADC conversions.

Address	Туре	Name	Description	Reset Value
00HEX	RW	MAIN_CTRL	LS operation mode control, SW reset	00HEX
04HEX	RW	LS_MEAS_RATE	LS measurement rate and resolution in active mode	22HEX
05HEX	RW	LS_GAIN	LS analog gain range	01HEX
06HEX	R	PART_ID	Part number ID and revision ID	B2HEX
07HEX	R	MAIN_STATUS	Power-on status, interrupt status, data status	20HEX
0AHEX	R	LS_DATA_IR_0	IR ADC measurement data - LSB	00HEX
0BHEX	R	LS_DATA_IR_1	IR ADC measurement data	00HEX
0CHEX	R	LS_DATA_IR_2	IR ADC measurement data - MSB	00HEX
0DHEX	R	LS_DATA_GREEN_0	Green ADC measurement data - LSB	00HEX
0EHEX	R	LS_DATA_GREEN_1	Green ADC measurement data	00HEX
0FHEX	R	LS_DATA_GREEN_2	Green ADC measurement data - MSB	00HEX
10HEX	R	LS_DATA_BLUE_0	Blue ADC measurement data - LSB	00HEX
11HEX	R	LS_DATA_BLUE_1	Blue ADC measurement data	00HEX
12HEX	R	LS_DATA_BLUE_2	Blue ADC measurement data - MSB	00HEX
13HEX	R	LS_DATA_RED_0	Red ADC measurement data - LSB	00HEX
14HEX	R	LS_DATA_RED_1	Red ADC measurement data	00HEX
15HEX	R	LS_DATA_RED_2	Red ADC measurement data - MSB	00HEX
19HEX	RW	INT_CFG	Interrupt configuration	10HEX
1AHEX	RW	INT_PERSISTENCE	Interrupt persist setting	00HEX
21HEX	RW	LS_THRES_UP_0	LS interrupt upper threshold, LSB	FFHEX
22HEX	RW	LS_THRES_UP_1	LS interrupt upper threshold	FFHEX
23HEX	RW	LS_THRES_UP_2	LS interrupt upper threshold, MSB	OFHEX
24HEX	RW	LS_THRES_LOW_0	LS interrupt lower threshold, LSB	00HEX
25HEX	RW	LS_THRES_LOW_1	LS interrupt lower threshold	00HEX
26HEX	RW	LS_THRES_LOW_2	LS interrupt lower threshold, MSB	00HEX
27HEX	RW	LS_THRES_VAR	LS interrupt variance threshold	00HEX

MAIN_CTRL

Default Value: 00HEX

7	6	5	4	3	2	1	0	
0	0	0	SW_Reset	0	CS_Mode	LS_EN	0	0X0

0X00

FIELD	BIT	DESCRIPTION			
SW_Reset	4	1 = Reset will be triggered			
CS_Mode	2	0 = ALS, IR and compensation channels activated 1 = All RGB+IR + compensation channels activated			
LS_EN	1	1 = Light sensor active 0 = Light sensor standby			

Writing to this register stops the ongoing measurements and starts new measurements (depends on the enable bit).

LS_MEAS_RATE

Default Value: 22HEX

7	6	5	4	3	2	1	0
0	LS Re	esolution/Bit\	Width	0	LS N	1easurement	Rate

0X04

FIELD	BIT	DESCRIPTION
LS Resolution/Bit Width	6:4	000 : 20 bit – 400ms 001 : 19 bit – 200ms 010 : 18 bit – 100ms (default) 011 : 17 bit – 50ms 100 : 16 bit – 25ms 101 : 13 bit – 3.125ms 110 : Reserved 111 : reserved
LS Measurement Rate	2:0	000 – 25ms 001 – 50ms 010 – 100ms (default) 011 – 200ms 100 – 500ms 101 – 1000ms 110 – 2000ms 111 – 2000ms

When the measurement repeat rate is programmed to be faster than possible for the specified ADC measurement time, the repeat rate will be lower than programmed (maximum speed).

Writing to this register stops the ongoing measurement and starts new measurements (depending on the respective bits)

LS_GAIN

Default Value: 01HEX

7	6	5	4	3	2	1	0
0	0	0	0	0		Gain Range	

0X05

FIELD	BIT	DESCRIPTION
Gain Range	2:0	000 : Gain 1 001 : Gain 3 010 : Gain 6 011 : Gain 9
		100 : Gain 18

The channels of the light sensor always run on the same gain range setting. Sensitivity settings correlate between the channels. Result output in Lux is available from ALS/green channel.

Writing to this register stops the ongoing measurement and starts new measurements (depending on the respective bits)

PART_ID

Default Value: B2HEX

7	6	5	4	3	2	1	0	
	Par	t ID			Revisi	on ID		0X0

06

FIELD	BIT	DESCRIPTION
Part Number ID	7:4	Part number ID
Revision ID	3:0	Revision ID of the component.

MAIN_STATUS

Default Value: 20HEX

7	6	5	4	3	2	1	0
0	0	Power On Status	LS Interrupt Status	LS Data Status	0	0	0

0X07

FIELD	BIT	DESCRIPTION
Power On Status	5	1 = Part went through a power-up event, either because the part was turned on or because there was power supply disturbance. All interrupt threshold settings in the registers have been reset to power-on default states and should be examined if necessary. The flag is cleared after the register is read.
LS Interrupt Status	4	0 : Interrupt condition not fulfilled (default) 1 : Interrupt condition fulfilled (cleared after read)
LS Data Status	3	0 : old data, already read (default) 1 : new data, not yet read (cleared after read)

LS DATA IR

Default Value: 00HEX, 00HEX, 00HEX

7	6	5	4	3	2	1	0	
	LS_DATA_IR_0 [7:0]							0X0A
	LS_DATA_IR_1 [15:8]						0X0B	
0	0	0	0		LS_DATA_I	R_2 [19:16]		0X0C

IR channel output data (unsigned integer, 13 to 20 bit, LSB aligned)

The IR channel output is already temperature compensated internally:

LS_DATA_IR - (IRint - LS_DATA_COMP)

When an I^2C^{TM} read operation is active and points to an address in the range 07HEX to 18HEX, all registers in this range are locked until the I^2C^{TM} read operation is completed or this address range is left.

This guarantees that the data in the registers comes from the same measurement even if an additional measurement cycle ends during the read operation. New measurement data is stored into temporary registers and the actual LS_DATA registers are updated as soon as there is no on-going I^2C^{TM} read operation to the address range 07HEX to 18HEX.

Reg 0AHEX Bit[7:0] IR diode data least significant data byte
Reg 0BHEX Bit[7:0] IR diode data intervening data byte
Reg 0CHEX Bit[3:0] IR diode data most significant data byte

LS DATA GREEN

Default Value: 00HEX, 00HEX, 00HEX

7	6	5	4	3	2	1	0	
	LS_DATA_GREEN_0 [7:0]							0X0D
	LS_DATA_GREEN_1 [15:8]					0X0E		
0	0	0	0		LS_DATA_GR	EEN_2 [19:16]		0X0F

ALS/CS Green channel digital output data.

The channel output is already temperature compensated internally:

LS DATA GREEN = (Greenint – LS DATA COMP)

When an I^2C^{TM} read operation is active and points to an address in the range 07HEX to 18HEX, all registers in this range are locked until the I^2C^{TM} read operation is completed or this address range is left.

This guarantees that the data in the registers comes from the same measurement even if an additional measurement cycle ends during the read operation. New measurement data is stored into temporary registers and the actual LS_DATA registers are updated as soon as there is no on-going I^2C^m read operation to the address range 07HEX to 18HEX.

Reg 0DHEX Bit[7:0] ALS / Green diode data least significant data byte
Reg 0EHEX Bit[7:0] ALS / Green diode data intervening data byte
Reg 0FHEX Bit[3:0] ALS / Green diode data most significant data byte

LS DATA BLUE

Default Value: 00HEX, 00HEX, 00HEX

7	6	5	4	3	2	1	0	
	LS_DATA_BLUE_0 [7:0]							0X10
	LS_DATA_BLUE_1 [15:8]							0X11
0	0	0	0		LS_DATA_BL	UE_2 [19:16]		0X12

CS Blue channel output data.

The channel output is already temperature compensated internally:

LS DATA BLUE = (Blueint – LS DATA COMP)

When an I^2C^{TM} read operation is active and points to an address in the range 07HEX to 18HEX, all registers in this range are locked until the I^2C^{TM} read operation is completed or this address range is left.

This guarantees that the data in the registers comes from the same measurement even if an additional measurement cycle ends during the read operation. New measurement data is stored into temporary registers and the actual LS_DATA registers are updated as soon as there is no on-going I^2C^m read operation to the address range 07HEX to 18HEX.

Reg 10HEX	Bit[7:0]	Blue diode data least significant data byte
Reg 11HEX	Bit[7:0]	Blue diode data intervening data byte
Reg 12HEX	Bit[3:0]	Blue diode data most significant data byte

LS DATA RED

Default Value: 00HEX, 00HEX, 00HEX

7	6	5	4	3	2	1	0	
			LS_DATA_F	RED_0 [7:0]				0X13
LS_DATA_RED_1 [15:8]								
0	0	0	0		LS_DATA_R	ED_2 [19:16]		0X15

The channel output is already temperature compensated internally:

LS DATA RED = (Redint – LS DATA COMP)

When an I^2C^{TM} read operation is active and points to an address in the range 07HEX to 18HEX, all registers in this range are locked until the I^2C^{TM} read operation is completed or this address range is left.

This guarantees that the data in the registers comes from the same measurement even if an additional measurement cycle ends during the read operation. New measurement data is stored into temporary registers and the actual LS_DATA registers are updated as soon as there is no on-going I^2C^m read operation to the address range 07HEX to 18HEX.

Reg 13HEX	Bit[7:0]	Red diode data least significant data byte
Reg 14HEX	Bit[7:0]	Red diode data intervening data byte
Reg 15HEX	Bit[3:0]	Red diode data most significant data byte

INT_CFG

Default Value: 10HEX

7	6	5	4	3	2	1	0	
0	0		errupt urce	LS Variation Int Mode	LS Interrupt Enable	0	0	
0	0	LS_IN	T_SEL	LS_VAR_MODE	LS_INT_EN	0	0	

0X19

FIELD	BIT	DESCRIPTION
LS_INT_SEL	5:4	00 : IR channel 01 : ALS/Green channel (default) 10 : Red channel 11 : Blue channel
LS_VAR_MODE	3	0 : LS threshold interrupt mode (default) 1 : LS variation interrupt mode
LS_INT_EN	2	0 : LS Interrupt disabled (default) 1 : LS Interrupt enabled

INT_PERSISTENCE

Default Value: 00HEX

7	6	5	4	3	2	1	0
	LS_P	ERSIST		0	0	0	0

0X1A

This register sets the number of similar consecutive LS interrupt events that must occur before the interrupt is asserted.

FIELD	BIT	DESCRIPTION
LS_PERSIST	7:4	0000 : Every LS value out of threshold range (default) asserts an interrupt 0001 : 2 consecutive LS values out of threshold range assert an interrupt 1111 : 16 consecutive LS values out of threshold range assert an interrupt

LS THRES UP

Default Value: FFHEX, FFHEX, 0FHEX

7	6	5	4	3	2	1	0	
			LS_THRES_	_UP_0 [7:0]				0X21
LS_THRES_UP_1 [15:8]								
0	0	0	0		LS_THRES_U	JP_2 [19:16]		0X23

LS_THRES_UP sets the upper threshold value for the LS interrupt. The Interrupt Controller compares the value in LS_THRES_UP against measured data in the LS_DATA registers of the selected LS interrupt channel. It generates an interrupt event if DATA exceeds the threshold level.

The data format for LS_THRES_UP must match that of the LS_DATA registers.

Reg 21HEXBit[7:0]LS upper interrupt threshold value, LSBReg 22HEXBit[7:0]LS upper interrupt threshold value, intervening byteReg 23HEXBit[3:0]LS upper interrupt threshold value, MSB

LS THRES LOW

Default value: 00HEX, 00HEX, 00HEX

7	6	5	4	3	2	1	0		
			LS_THRES_I	_OW_0 [7:0]				0X24	
	LS_THRES_LOW_1 [15:8]								
0	0	0	0		LS_THRES_L	OW_2 [19:16]		0X26	

LS_THRES_LOW sets the lower threshold value for the LS interrupt. The Interrupt Controller compares the value in LS_THRES_LOW against measured data in the LS_DATA registers of the selected LS interrupt channel. It generates an interrupt event if the LS_DATA is below the threshold level.

The data format for LS_THRES_LOW must match that of the LS_DATA registers.

Reg 24HEX Bit[7:0] LS lower interrupt threshold value, LSB

Reg 25HEX Bit[7:0] LS lower interrupt threshold value, intervening byte

Reg 26HEX Bit[3:0] LS lower interrupt threshold value, MSB

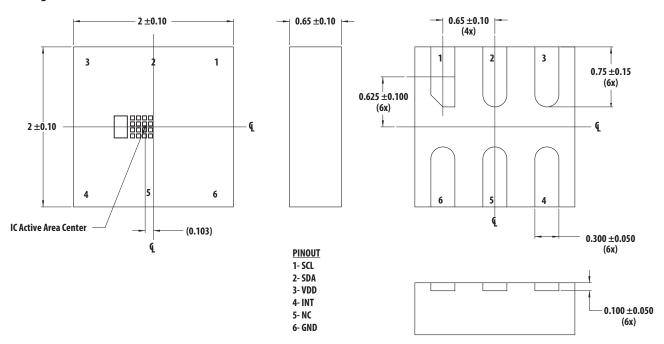
LS THRES VAR

Default Value: 00HEX

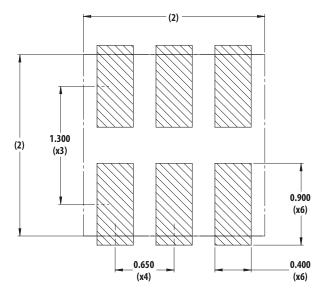
7	6	5	4	3	2	1	0
0	0	0	0	0	L	.S_THRES_VA	R

FIELD	BIT	DESCRIPTION
LS_THRES_VAR	2:0	000 : new LS_DATA varies by 8 counts compared to previous result
		001 : new LS_DATA varies by 16 counts compared to previous result
		010 : new LS_DATA varies by 32 counts compared to previous result
		011 : new LS_DATA varies by 64 counts compared to previous result
		111 : new LS_DATA varies by 1024 counts compared to previous result

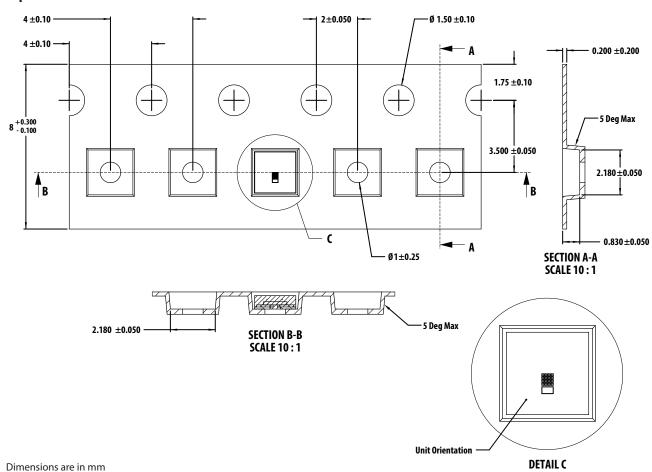
Application Information Hardware


The application hardware circuit for using implementing RGB, ALS and IR solution is simple with the APDS-9250 and is shown in following figure. The bypass capacitor is placed as close to the device package and is connected directly to the power source and to the ground, as shown in Figure below. It allows the AC component of the VDD to pass through to ground. Suggested to have bypass capacitor that have low effective series resistance (ESR) and low effective series inductance (ESI), such as the common ceramic types, which provide a low impedance path to ground at high frequencies to handle transient currents caused by internal logic switching.

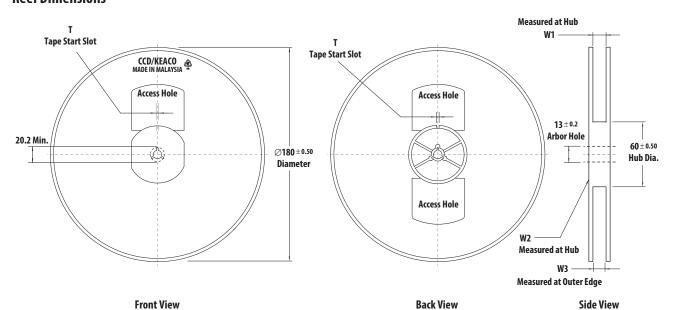
Pull-up resistors, RSDA and RSCL, maintain the SDA and SCL lines at a high level when the bus is free and ensure the signals are pulled up from a low to a high level within the required rise time. A pull-up resistor, RINT, is also required for the interrupt (INT), which functions as a wired-AND signal in a similar fashion to the SCL and SDA lines. A typical impedance value of $10 \text{ k}\Omega$ can be used.


For a complete description of I^2C maximum and minimum R1 and R2 values, please review the I^2C Specification at http://www.semiconductors.philips.com.

Package Outline Dimensions



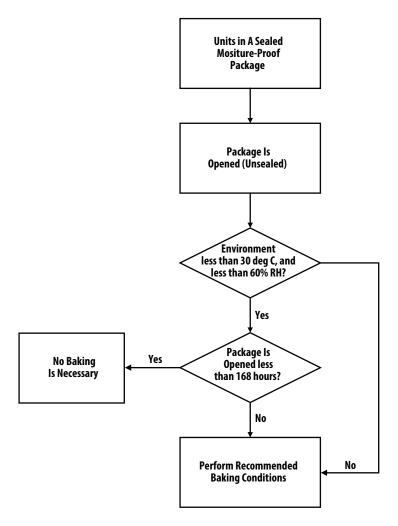
PCB Pad Layout



Dimensions are in mm

Tape Dimensions

Reel Dimensions



SCALE 20:1

TAPE WIDTH	T	W1	W2	W3
8 MM	3 ± 0.50	8.4 + 1.5	14.4 MAX	7.9 MIN
		- 0.0		10.9 MAX

Moisture Proof Packaging

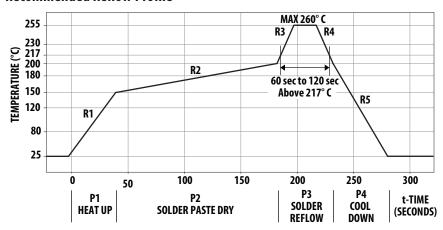
All APDS-9250 options are shipped in moisture proof package. Once opened, moisture absorption begins. This part is compliant to JEDEC MSL 3.

Recommended Storage Conditions

Storage Temperature	10° C to 30° C	
Relative Humidity	Below 60% RH	

Time from Unsealing to Soldering

After removal from the bag, the parts should be soldered within seven days if stored at the recommended storage conditions. When MBB (Moisture Barrier Bag) is opened and the parts are exposed to the recommended storage conditions more than seven days the parts must be baked before reflow to prevent damage to the parts.


Baking conditions

If the parts are not stored per the recommended storage conditions they must be baked before reflow to prevent damage to the parts.

Package	Temp.	Time	
In Reels	60°C	48 hours	
In Bulk	100°C	4 hours	

Note: Baking should only be done once.

Recommended Reflow Profile

			Maximum $\Delta T/\Delta time$
Process Zone	Symbol	ΔT	or Duration
Heat Up	P1, R1	25° C to 150° C	3° C/s
Solder Paste Dry	P2, R2	150° C to 200° C	100 s to 180s
Solder Reflow	P3, R3	200° C to 260° C	3° C/s
	P3, R4	260° C to 200° C	-6° C/s
Cool Down	P4, R5	200° C to 25° C	-6° C/s
Time maintained above liquidus point , 217° C		> 217° C	60 s to 120 s
Peak Temperature		260° C	_
Time within 5° C of actual Peak Temperature		> 255° C	20 s to 40 s
Time 25° C to Peak Temperature		25° C to 260° C	8 mins

The reflow profile is a straight-line representation of a nominal temperature profile for a convective reflow solder process. The temperature profile is divided into four process zones, each with different $\Delta T/\Delta time$ temperature change rates or duration. The $\Delta T/\Delta time$ rates or duration are detailed in the above table. The temperatures are measured at the component to printed circuit board connections.

In process zone P1, the PC board and component pins are heated to a temperature of 150° C to activate the flux in the solder paste. The temperature ramp up rate, R1, is limited to 3° C per second to allow for even heating of both the PC board and component pins.

Process zone P2 should be of sufficient time duration (100 to 180 seconds) to dry the solder paste. The temperature is raised to a level just below the liquidus point of the solder.

Process zone P3 is the solder reflow zone. In zone P3, the temperature is quickly raised above the liquidus point of solder to 260° C (500° F) for optimum results. The dwell

time above the liquidus point of solder should be between 60 and 120 seconds. This is to assure proper coalescing of the solder paste into liquid solder and the formation of good solder connections. Beyond the recommended dwell time the intermetallic growth within the solder connections becomes excessive, resulting in the formation of weak and unreliable connections. The temperature is then rapidly reduced to a point below the solidus temperature of the solder to allow the solder within the connections to freeze solid.

Process zone P4 is the cool down after solder freeze. The cool down rate, R5, from the liquidus point of the solder to 25° C (77° F) should not exceed 6° C per second maximum. This limitation is necessary to allow the PC board and component pins to change dimensions evenly, putting minimal stresses on the component.

It is recommended to perform reflow soldering no more than twice.

DISCLAIMER: Avago's products and software are not specifically designed, manufactured or authorized for sale as parts, components or assemblies for the planning, construction, maintenance or direct operation of a nuclear facility or for use in medical devices or applications. Customer is solely responsible, and waives all rights to make claims against Avago or its suppliers, for all loss, damage, expense or liability in connection with such use.

For product information and a complete list of distributors, please go to our web site: **www.avagotech.com**

