# imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

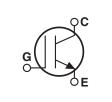


## Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China






Utilizing the latest Field Stop and Trench Gate technologies, these IGBT's have ultra low V<sub>CE(ON)</sub> and are ideal for low frequency applications that require absolute minimum conduction loss. Easy paralleling is a result of very tight parameter distribution and a slightly positive V<sub>CE(ON)</sub> temperature coefficient. A built-in gate resistor ensures extremely reliable operation, even in the event of a short circuit fault. Low gate charge simplifies gate drive design and minimizes losses.

- 1200V Field Stop
- Trench Gate: Low V<sub>CE(on)</sub>
- Easy Paralleling

**MAXIMUM RATINGS** 

Intergrated Gate Resistor: Low EMI, High Reliability





Applications: Welding, Inductive Heating, Solar Inverters, SMPS, Motor drives, UPS

All Ratings:  $T_c = 25^{\circ}C$  unless otherwise specified.

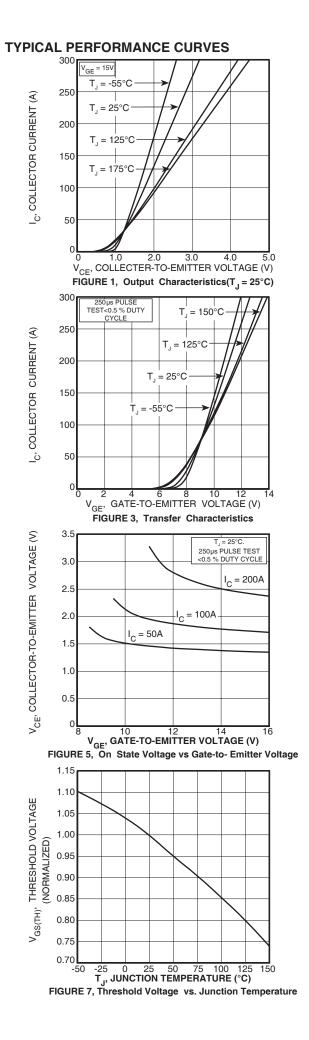
|                     | <b>3 3 C</b>                                                |              | -       |  |
|---------------------|-------------------------------------------------------------|--------------|---------|--|
| Symbol              | Parameter                                                   | APT100GN120J | UNIT    |  |
| V <sub>CES</sub>    | Collector-Emitter Voltage                                   | 1200         | - Volts |  |
| $V_{GE}$            | Gate-Emitter Voltage                                        | ±30          |         |  |
| I <sub>C1</sub>     | Continuous Collector Current @ T <sub>C</sub> = 25°C        | 153          |         |  |
| I <sub>C2</sub>     | Continuous Collector Current @ T <sub>C</sub> = 110°C       | 70           | Amps    |  |
| I <sub>CM</sub>     | Pulsed Collector Current (1)                                | 300          |         |  |
| SSOA                | Switching Safe Operating Area @ T <sub>J</sub> = 150°C      | 300A @ 1200V |         |  |
| P <sub>D</sub>      | Total Power Dissipation                                     | 446          | Watts   |  |
| T_,T <sub>STG</sub> | Operating and Storage Junction Temperature Range            | -55 to 150   |         |  |
| Τ <sub>L</sub>      | Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec. | 300          | − °C    |  |

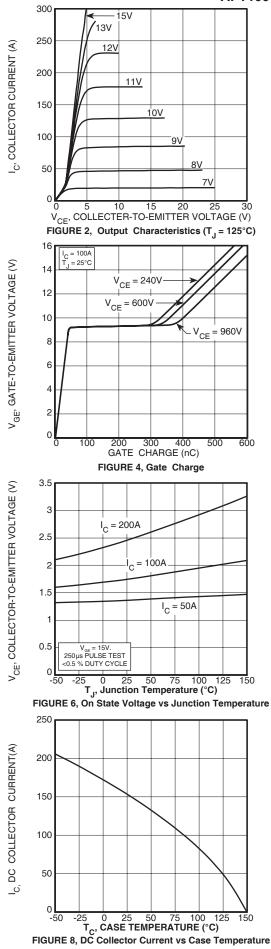
### STATIC ELECTRICAL CHARACTERISTICS

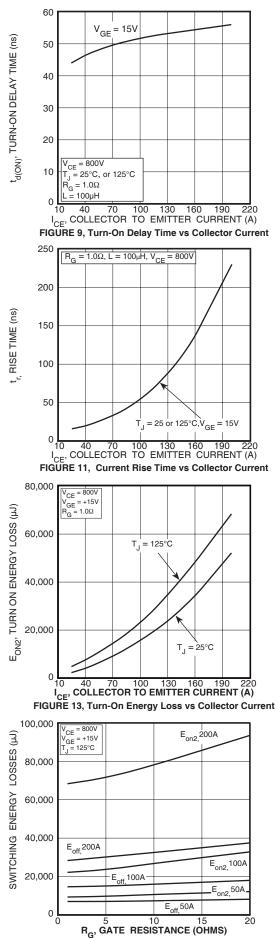
| Symbol               | Characteristic / Test Conditions                                                                                | MIN  | ТҮР | МАХ | Units |
|----------------------|-----------------------------------------------------------------------------------------------------------------|------|-----|-----|-------|
| V <sub>(BR)CES</sub> | Collector-Emitter Breakdown Voltage ( $V_{GE} = 0V, I_{C} = 6mA$ )                                              | 1200 |     |     | Volts |
| V <sub>GE(TH)</sub>  | Gate Threshold Voltage $(V_{CE} = V_{GE}, I_{C} = 6mA, T_{j} = 25^{\circ}C)$                                    | 5.0  | 5.8 | 6.5 |       |
| V <sub>CE(ON)</sub>  | Collector-Emitter On Voltage ( $V_{GE} = 15V, I_{C} = 100A, T_{j} = 25^{\circ}C$ )                              | 1.4  | 1.7 | 2.1 |       |
|                      | Collector-Emitter On Voltage ( $V_{GE} = 15V, I_C = 100A, T_j = 125^{\circ}C$ )                                 |      | 2.0 |     |       |
| I <sub>CES</sub>     | Collector Cut-off Current (V <sub>CE</sub> = 1200V, V <sub>GE</sub> = 0V, T <sub>j</sub> = 25°C) <sup>(2)</sup> |      |     | 100 | μA    |
|                      | Collector Cut-off Current ( $V_{CE} = 1200V, V_{GE} = 0V, T_j = 125^{\circ}C$ ) <sup>(2)</sup>                  |      |     | TBD |       |
| I <sub>GES</sub>     | Gate-Emitter Leakage Current ( $V_{GE} = \pm 20V$ )                                                             |      |     | 600 | nA    |
| R <sub>G(int)</sub>  | Intergrated Gate Resistor                                                                                       |      | 7.5 |     | Ω     |

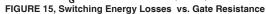
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.

#### **DYNAMIC CHARACTERISTICS**


| Symbol              | Characteristic                                | Test Conditions                                                                       | MIN | ТҮР  | МАХ | UNIT |
|---------------------|-----------------------------------------------|---------------------------------------------------------------------------------------|-----|------|-----|------|
| C <sub>ies</sub>    | Input Capacitance                             | Capacitance                                                                           |     | 6500 |     |      |
| C <sub>oes</sub>    | Output Capacitance                            | V <sub>GE</sub> = 0V, V <sub>CE</sub> = 25V                                           |     | 365  |     | pF   |
| C <sub>res</sub>    | Reverse Transfer Capacitance                  | f = 1  MHz                                                                            |     | 280  |     |      |
| $V_{GEP}$           | Gate-to-Emitter Plateau Voltage               | Gate Charge                                                                           |     | 9.5  |     | V    |
| Q <sub>g</sub>      | Total Gate Charge $^{\textcircled{3}}$        | V <sub>GE</sub> = 15V                                                                 |     | 540  |     |      |
| Q <sub>ge</sub>     | Gate-Emitter Charge                           | V <sub>CE</sub> = 600V                                                                |     | 50   |     | nC   |
| $Q_{gc}$            | Gate-Collector ("Miller") Charge              | I <sub>C</sub> = 100A                                                                 |     | 295  |     |      |
| SSOA                | Switching Safe Operating Area                 | $T_J = 150^{\circ}C, R_G = 4.3\Omega^{?}, V_{GE} = 15V, L = 100\mu H, V_{CE} = 1200V$ | 300 |      |     | А    |
| t <sub>d(on)</sub>  | Turn-on Delay Time                            | Inductive Switching (25°C)                                                            |     | 50   |     |      |
| t <sub>r</sub>      | Current Rise Time                             | V <sub>CC</sub> = 800V                                                                |     | 50   |     |      |
| t <sub>d(off)</sub> | Turn-off Delay Time                           | V <sub>GE</sub> = 15V                                                                 |     | 615  |     | ns   |
| t <sub>f</sub>      | Current Fall Time                             | I <sub>C</sub> = 100A                                                                 |     | 105  |     |      |
| E <sub>on1</sub>    | Turn-on Switching Energy $^{\textcircled{4}}$ | $R_{\rm g} = 1.0\Omega^{(7)}$                                                         |     | 11   |     |      |
| E <sub>on2</sub>    | Turn-on Switching Energy (Diode) $^{(5)}$     | $T_J = +25^{\circ}C$                                                                  |     | 15   |     | mJ   |
| E <sub>off</sub>    | Turn-off Switching Energy <sup>6</sup>        |                                                                                       |     | 9.5  |     | 1    |
| t <sub>d(on)</sub>  | Turn-on Delay Time                            | Inductive Switching (125°C)                                                           |     | 50   |     |      |
| t <sub>r</sub>      | Current Rise Time                             | V <sub>CC</sub> = 800V                                                                |     | 50   |     | ns   |
| t <sub>d(off)</sub> | Turn-off Delay Time                           | V <sub>GE</sub> = 15V                                                                 |     | 725  |     |      |
| t <sub>f</sub>      | Current Fall Time                             | I <sub>C</sub> = 100A                                                                 |     | 210  |     | 1    |
| E <sub>on1</sub>    | Turn-on Switching Energy ④                    | $R_{g} = 1.0\Omega^{7}$                                                               |     | 12   |     |      |
| E <sub>on2</sub>    | Turn-on Switching Energy (Diode) $^{(5)}$     | T <sub>J</sub> = +125°C                                                               |     | 22   |     | mJ   |
| E <sub>off</sub>    | Turn-off Switching Energy <sup>6</sup>        | ]                                                                                     |     | 14   |     |      |


### THERMAL AND MECHANICAL CHARACTERISTICS


| Symbol                 | Characteristic                                                                       | MIN  | ТҮР  | МАХ | UNIT  |  |
|------------------------|--------------------------------------------------------------------------------------|------|------|-----|-------|--|
| $R_{	ext{	hetaJC}}$    | Junction to Case (IGBT)                                                              |      |      | .28 |       |  |
| $R_{	ext{	hetaJC}}$    | Junction to Case (DIODE)                                                             |      |      | N/A | °C/W  |  |
| V <sub>Isolation</sub> | RMS Voltage (50-60Hz Sinusoidal Waveform from Terminals to Mounting Base for 1 Min.) | 2500 |      |     | Volts |  |
| W <sub>T</sub>         | Package Weight                                                                       |      | 1.03 |     | oz    |  |
|                        |                                                                                      |      | 29.2 |     | gm    |  |
| Torque                 | Maximum Terminal & Mounting Torque                                                   |      |      | 10  | lb∙in |  |
|                        |                                                                                      |      |      | 1.1 | N∙m   |  |


- (1) Repetitive Rating: Pulse width limited by maximum junction temperature.
- (2) For Combi devices,  ${\rm I}_{\rm ces}$  includes both IGBT and FRED leakages
- ③ See MIL-STD-750 Method 3471.
- (4) E<sub>on1</sub> is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode.
- (5) E<sub>on2</sub> is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching loss. (See Figures 21, 22.)
- 6 E<sub>off</sub> is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
- $\bigcirc$  R<sub>G</sub> is external gate resistance, not including R<sub>G(int)</sub> nor gate driver impedance. (MIC4452)

10-2005









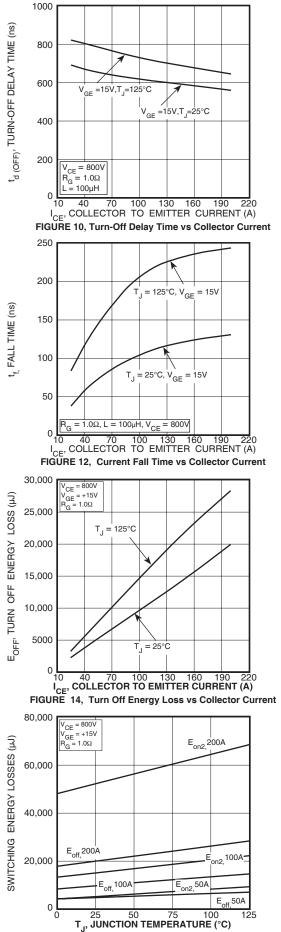
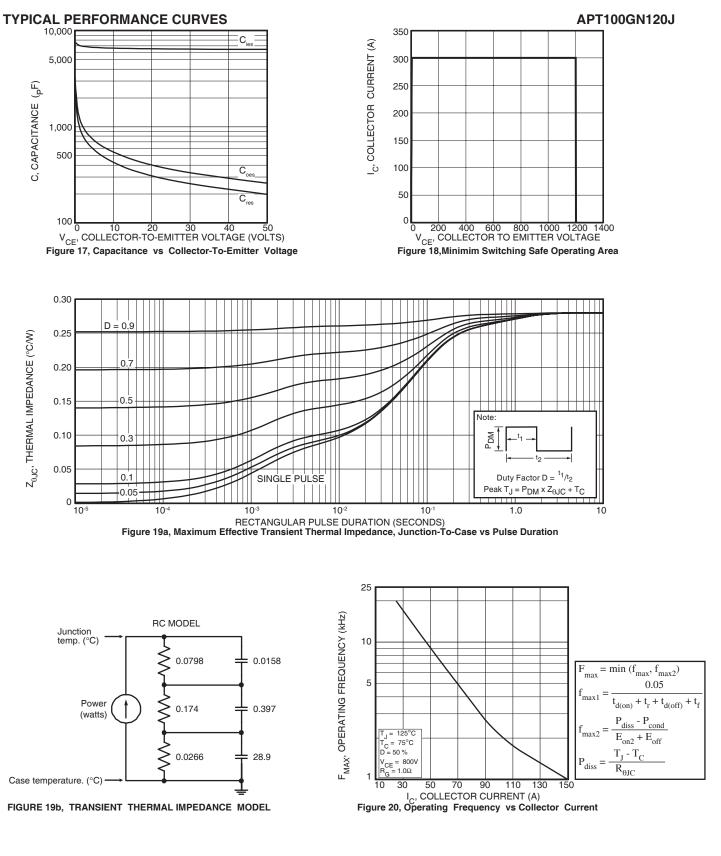




FIGURE 16, Switching Energy Losses vs Junction Temperature

050-7623 Rev A 10-2005



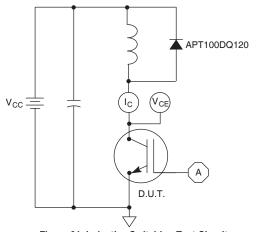



Figure 21, Inductive Switching Test Circuit

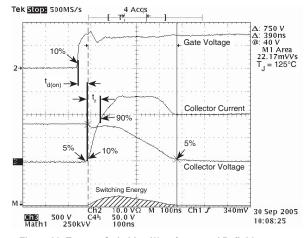



Figure 22, Turn-on Switching Waveforms and Definitions

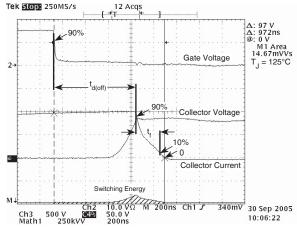
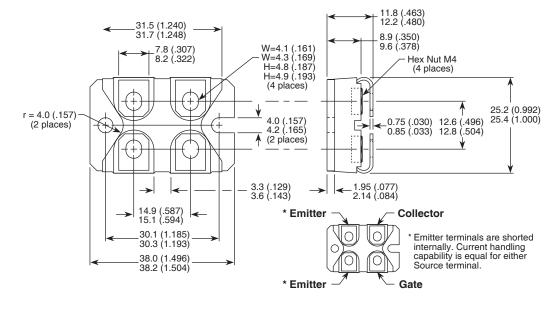




Figure 23, Turn-off Switching Waveforms and Definitions



#### SOT-227 (ISOTOP®) Package Outline

Dimensions in Millimeters and (Inches)

ISOTOP® is a Registered Trademark of SGS Thomson.