

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

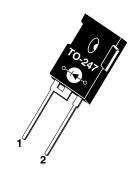
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



1 - Cathode

2 - Anode Back of Case - Cathode

APT100S20B(G) 200V 120A

*G Denotes RoHS Compliant, Pb Free Terminal Finish

HIGH VOLTAGE SCHOTTKY DIODE

PRODUCT APPLICATIONS PRODUCT FEATURES PRODUCT BENEFITS • Ultrafast Recovery Times Low Losses Parallel Diode Soft Recovery Characteristics -Switchmode Power Supply • Low Noise Switching -Inverters • Free Wheeling Diode • Popular TO-247 Package or Cooler Operation Surface Mount D³PAK Package -Motor Controllers -Converters • Higher Reliability Systems • Low Forward Voltage Snubber Diode • High Blocking Voltage • Uninterruptible Power Supply (UPS) • Increased System Power Low Leakage Current • 48 Volt Output Rectifiers Density

MAXIMUM RATINGS

• High Speed Rectifiers

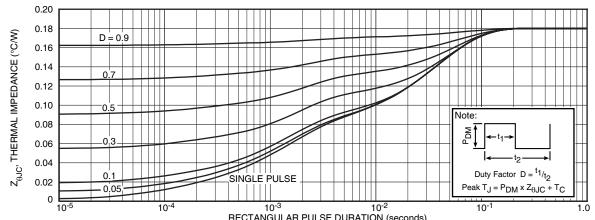
All Ratings: $T_C = 25^{\circ}C$ unless otherwise specified.

Symbol	Characteristic / Test Conditions	APT100S20B(G)	UNIT	
V_R	Maximum D.C. Reverse Voltage			
V _{RRM}	Maximum Peak Repetitive Reverse Voltage	200	Volts	
V _{RWM}	Maximum Working Peak Reverse Voltage			
I _{F(AV)}	Maximum Average Forward Current (1) (T _C = 125°C, Duty Cycle = 0.5)	120		
I _{F(RMS)}	RMS Forward Current (Square wave, 50% duty)	318	Amps	
I _{FSM}	Non-Repetitive Forward Surge Current (T _J = 45°C, 8.3ms)	1000		
T_J, T_STG	Operating and StorageTemperature Range	-55 to 150	°C	
T _L	Lead Temperature for 10 Sec.	300		
E _{VAL}	Avalanche Energy (2A, 50mH)	100	mJ	

STATIC ELECTRICAL CHARACTERISTICS

Symbol			MIN	TYP	MAX	UNIT
V _F	Forward Voltage	I _F = 100A		.89	.95	Volts
		I _F = 200A		1.06		
		I _F = 100A, T _J = 125°C		.76		
I _{RM}	Maximum Reverse Leakage Current	V _R = 200V			2	mA
		V _R = 200V, T _J = 125°C			40	
C _T	Junction Capacitance, V _R = 200V	•		470		pF

053-6021 Rev C 7-2006


Symbol	Characteristic	Test Conditions	MIN	TYP	MAX	UNIT
t _{rr}	Reverse Recovery Time	$I_F = 100A$, $di_F/dt = -200A/\mu s$ $V_R = 133V$, $T_C = 25^{\circ}C$	-	70		ns
Q _{rr}	Reverse Recovery Charge		-	230		nC
I _{RRM}	Maximum Reverse Recovery Current		-	6	-	Amps
t _{rr}	Reverse Recovery Time	I _F = 100A, di _F /dt = -200A/µs V _R = 133V, T _C = 125°C	1	110		ns
Q _{rr}	Reverse Recovery Charge		1	690		nC
I _{RRM}	Maximum Reverse Recovery Current		-	11	-	Amps
t _{rr}	Reverse Recovery Time	$I_F = 100A$, $di_F/dt = -700A/\mu s$ $V_R = 133V$, $T_C = 125^{\circ}C$	-	95		ns
Q _{rr}	Reverse Recovery Charge		-	1750		nC
I _{RRM}	Maximum Reverse Recovery Current		-	32		Amps

THERMAL AND MECHANICAL CHARACTERISTICS

Symbol	Characteristic / Test Conditions	MIN	TYP	MAX	UNIT
$R_{\theta JC}$	Junction-to-Case Thermal Resistance			.18	°C/W
W _T	Package Weight		0.22		oz
VV _⊤			5.9		g
Torque	Maximum Mounting Torque			10	lb•in
				1.1	N•m

 ${\bf Microsemi\, reserves\, the\, right\, to\, change,\, without\, notice,\, the\, specifications\, and\, information\, contained\, herein.}$

Countinous current limited by package lead temperature.

RECTANGULAR PULSE DURATION (seconds)
FIGURE 1a. MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs. PULSE DURATION

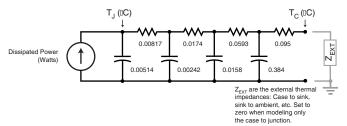


FIGURE 1b, TRANSIENT THERMAL IMPEDANCE MODEL

TYPICAL PERFORMANCE CURVES

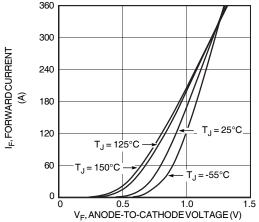


Figure 2. Forward Current vs. Forward Voltage

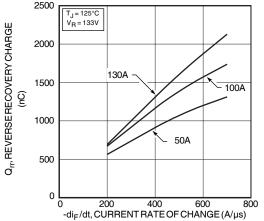


Figure 4. Reverse Recovery Charge vs. Current Rate of Change

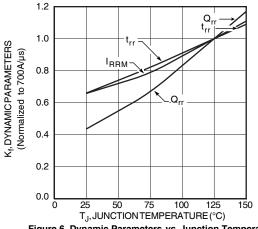


Figure 6. Dynamic Parameters vs. Junction Temperature

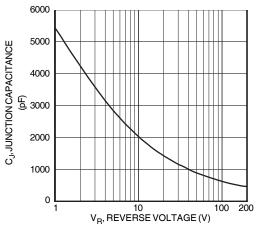


Figure 8. Junction Capacitance vs. Reverse Voltage

APT100S20B(G)

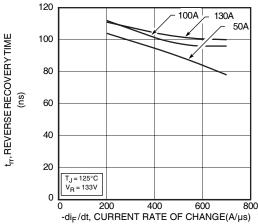


Figure 3. Reverse Recovery Time vs. Current Rate of Change

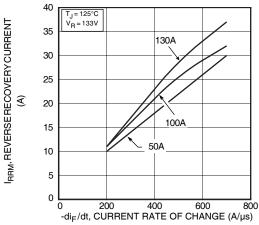


Figure 5. Reverse Recovery Current vs. Current Rate of Change

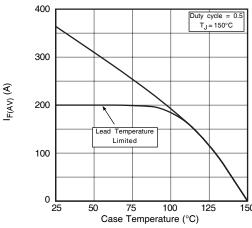


Figure 7. Maximum Average Forward Current vs. CaseTemperature

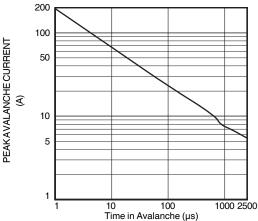


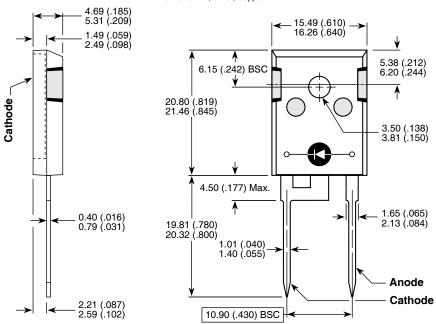
Figure 9. Single Pulse UIS SOA

้อ์.25 I_{RRM}

4

6

Figure 9. Diode Test Circuit


Zero

2

- 1 I_F Forward Conduction Current
- 2 di_F/dt Rate of Diode Current Change Through Zero Crossing.
- 3 I_{RRM} Maximum Reverse Recovery Current.
- 4 t_{rr} Reverse Recovery Time, measured from zero crossing where diode current goes from positive to negative, to the point at which the straight line through I_{RRM} and 0.25•I_{RRM} passes through zero.
- $\mathbf{5}$ \mathbf{Q}_{rr} Area Under the Curve Defined by $\mathbf{I}_{\mathsf{RRM}}$ and \mathbf{t}_{rr} .

Figure 10, Diode Reverse Recovery Waveform and Definitions

TO-247 Package Outline e1 SAC: Tin, Silver, Copper

Dimensions in Millimeters and (Inches)