: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

High Speed PT IGBT

POWER MOS 8^{\circledR} is a high speed Punch-Through switch-mode IGBT. Low $\mathrm{E}_{\text {off }}$ is achieved through leading technology silicon design and lifetime control processes. A reduced $\mathrm{E}_{\text {off }}$ $\mathrm{V}_{\mathrm{CE}(\mathrm{ON})}$ tradeoff results in superior efficiency compared to other IGBT technologies. Low gate charge and a greatly reduced ratio of $\mathrm{C}_{\text {res }} / \mathrm{C}_{\text {ies }}$ provide excellent noise immunity, short delay times and simple gate drive. The intrinsic chip gate resistance and capacitance of

Single die IGBT

FEATURES

- Fast switching with low EMI
- Very Low $\mathrm{E}_{\text {off }}$ for maximum efficiency
- Ultra low $\mathrm{C}_{\text {res }}$ for improved noise immunity
- Low conduction loss
- Low gate charge
- Increased intrinsic gate resistance for low EMI
- RoHS compliant

TYPICAL APPLICATIONS

- ZVS phase shifted and other full bridge
- Half bridge
- High power PFC boost
- Welding
- UPS, solar, and other inverters
- High frequency, high efficiency industrial

Absolute Maximum Ratings

Symbol	Parameter	Ratings	Unit
$\mathrm{V}_{\text {ces }}$	Collector Emitter Voltage	600	V
$\mathrm{I}_{\mathrm{C} 1}$	Continuous Collector Current @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}{ }^{1}$	183	A
$\mathrm{I}_{\mathrm{C} 2}$	Continuous Collector Current @ $\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$	102	
$\mathrm{I}_{\text {CM }}$	Pulsed Collector Current ${ }^{2}$	307	
$V_{\text {GE }}$	Gate-Emitter Voltage ${ }^{3}$	± 30	V
P_{D}	Total Power Dissipation @ $\mathrm{C}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	780	W
SSOA	Switching Safe Operating Area @ $\mathrm{T}_{\mathrm{J}}=150^{\circ} \mathrm{C}$	307A @ 600V	
$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {STG }}$	Operating and Storage Junction Temperature Range	-55 to 150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature for Soldering: 0.063" from Case for 10 Seconds	300	

Static Characteristics $\quad \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ unless otherwise specified

Symbol	Parameter	Test Conditions		Min	Typ	Max	Unit
$\mathrm{V}_{\text {BR(CES }}$	Collector-Emitter Breakdown Voltage	$\mathrm{V}_{G E}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=250 \mu \mathrm{~A}$		600			V
$V_{\text {CE(on) }}$	Collector-Emitter On Voltage	$\begin{gathered} \mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V}, \\ \mathrm{I}_{\mathrm{C}}=62 \mathrm{~A} \end{gathered}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		2.0	2.5	
			$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$		1.9		
$\mathrm{V}_{\text {GE(th) }}$	Gate Emitter Threshold Voltage	$\mathrm{V}_{G E}=\mathrm{V}_{\text {CE }}, \mathrm{I}_{\mathrm{C}}=2.5 \mathrm{~mA}$		3	4.5	6	
$\mathrm{I}_{\text {ces }}$	Zero Gate Voltage Collector Current	$\begin{gathered} \mathrm{V}_{\mathrm{CE}}=600 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{GE}}=0 \mathrm{~V} \end{gathered}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$			1000	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$			5000	
$\mathrm{I}_{\text {GES }}$	Gate-Emitter Leakage Current	$\mathrm{V}_{\text {GS }}= \pm 30 \mathrm{~V}$				± 100	nA

Thermal and Mechanical Characteristics

Symbol	Characteristic	Min	Typ	Max	Unit
$\mathrm{R}_{\text {өJc }}$	Junction to Case Thermal Resistance	-	-	0.16	${ }^{\circ} \mathrm{C} / \mathrm{W}$
W_{T}	Package Weight	-	5.9	-	g
Torque	Mounting Torque (TO-247 Package), 4-40 or M3 screw			10	in $\cdot \mathrm{lbf}$

[^0]Typical Performance Curves

FIGURE 3，Transfer Characteristic

FIGURE 5，On State Voltage vs Gate－to－Emitter Voltage

FIGURE 7，Threshold Voltage vs Junction Temperature

APT102GA60B2＿L

FIGURE 4，Gate charge

FIGURE 6，On State Voltage vs Junction Temperature

FIGURE 8，DC Collector Current vs Case Temperature

Typical Performance Curves

FIGURE 9, Turn-On Delay Time vs Collector Current

FIGURE 11, Current Rise Time vs Collector Current

FIGURE 13, Turn-On Energy Loss vs Collector Current

FIGURE 15, Switching Energy Losses vs Gate Resistance

APT102GA60B2_L

${ }^{\text {CE }}$, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current

FIGURE 12, Current Fall Time vs Collector Current

FIGURE 14, Turn-Off Energy Loss vs Collector Current

FIGURE 16, Switching Energy Losses vs Junction Temperature

Typical Performance Curves

APT102GA60B2_L

FIGURE 18, Minimum Switching Safe Operating Area

Figure 19, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration

Figure 20, Inductive Switching Test Circuit

Figure 22, Turn-off Switching Waveforms and Definitions

Figure 21, Turn-on Switching Waveforms and Definitions

These dimensions are equal to the TO-247 without the mounting hole.
Dimensions in Millimeters and (Inches)

TO-264 (L) Package Outline

[^0]: 1 Continuous current limited by package lead temperature.
 2 Repetitive Rating: Pulse width and case temperature limited by maximum junction temperature.
 3 Pulse test: Pulse Width < 380μ s, duty cycle < 2%.
 4 See Mil-Std-750 Method 3471 .
 $5 R_{G}$ is external gate resistance, not including internal gate resistance or gate driver impedance. (MIC4452)
 $6 \mathrm{E}_{\text {on } 2}$ is the clamped inductive turn on energy that includes a commutating diode reverse recovery current in the IGBT turn on energy loss. A combi device is used for the clamping diode.
 $7 E_{\text {off }}$ is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1.
 Microsemi reserves the right to change, without notice, the specifications and information contained herein.

