

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

APT1204R7KFLL

1200V 3.5A 4.700Ω

POWER MOS 7[®] FREDFET

Power MOS 7° is a new generation of low loss, high voltage, N-Channel enhancement mode power MOSFETS. Both conduction and switching losses are addressed with Power MOS 7° by significantly lowering $R_{DS(ON)}$ and Q_g . Power MOS 7° combines lower conduction and switching losses along with exceptionally fast switching speeds inherent with Microsemi's patented metal gate structure.

• Lower Input Capacitance

• Increased Power Dissipation

Lower Miller CapacitanceLower Gate Charge, Qg

• Easier To Drive

TO-220 Package

MAXIMUM RATINGS

All Ratings: $T_C = 25^{\circ}C$ unless otherwise specified.

Symbol	Parameter	APT1204R7KFLL	UNIT	
V _{DSS}	Drain-Source Voltage	1200	Volts	
I _D	Continuous Drain Current @ T _C = 25°C	3.5	Amps	
I _{DM}	Pulsed Drain Current (1)	14	Allips	
V _{GS}	Gate-Source Voltage Continuous	±30	Volts	
V _{GSM}	Gate-Source Voltage Transient	±40	Volta	
P_{D}	Total Power Dissipation @ T _C = 25°C	135	Watts	
, D	Linear Derating Factor	1.08	W/°C	
T_J , T_{STG}	Operating and Storage Junction Temperature Range	-55 to 150	- °C	
T_L	Lead Temperature: 0.063" from Case for 10 Sec.	300] ~	
I _{AR}	Avalanche Current (1) (Repetitive and Non-Repetitive)	3.5	Amps	
E _{AR}	Repetitive Avalanche Energy (1)	10	mJ	
E _{AS}	Single Pulse Avalanche Energy 4	425	1 1110	

STATIC ELECTRICAL CHARACTERISTICS

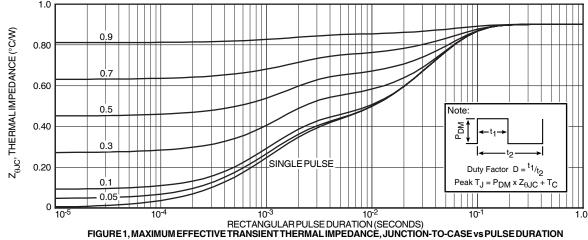
Symbol	Characteristic / Test Conditions	MIN	TYP	MAX	UNIT
BV _{DSS}	Drain-Source Breakdown Voltage $(V_{GS} = 0V, I_D = 250\mu\text{A})$	1200			Volts
R _{DS(on)}	Drain-Source On-State Resistance $②$ (V _{GS} = 10V, I _D = 1.75A)			4.70	Ohms
I _{DSS}	Zero Gate Voltage Drain Current $(V_{DS} = 1200V, V_{GS} = 0V)$			250	μΑ
	Zero Gate Voltage Drain Current ($V_{DS} = 960V$, $V_{GS} = 0V$, $T_{C} = 125$ °C)			1000	
I _{GSS}	Gate-Source Leakage Current $(V_{GS} = \pm 30V, V_{DS} = 0V)$			±100	nA
V _{GS(th)}	Gate Threshold Voltage $(V_{DS} = V_{GS}, I_{D} = 1mA)$	3		5	Volts

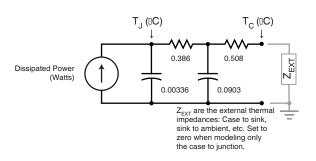
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.

Symbol	Characteristic	Test Conditions	MIN	TYP	MAX	UNIT
C _{iss}	Input Capacitance	V _{GS} = 0V		715		
C _{oss}	Output Capacitance	V _{DS} = 25V		130		pF
C _{rss}	Reverse Transfer Capacitance	f = 1 MHz		36		
Q_{g}	Total Gate Charge ^③	V _{GS} = 10V		31		
Q_gs	Gate-Source Charge	V _{DD} = 600V		4		nC
Q_{gd}	Gate-Drain ("Miller") Charge	I _D = 3.5A @ 25°C		21		
t _{d(on)}	Turn-on Delay Time	RESISTIVE SWITCHING		7		
t _r	Rise Time	V _{GS} = 15V V _{DD} = 600V		2		ns
t _{d(off)}	Turn-off Delay Time	I _D = 3.5A @ 25°C		20		1.0
t _f	Fall Time	$R_{G} = 1.6\Omega$		24		
E _{on}	Turn-on Switching Energy ^⑥	INDUCTIVE SWITCHING @ 25°C V _{DD} = 800V, V _{GS} = 15V		115		
E _{off}	Turn-off Switching Energy	$I_D = 3.5A, R_G = 5\Omega$		23		μJ
E _{on}	Turn-on Switching Energy ^⑥	INDUCTIVE SWITCHING @ 125°C V _{DD} = 800V, V _{GS} = 15V		135		μο
E _{off}	Turn-off Switching Energy	$I_{D} = 3.5A, R_{G} = 4.3\Omega$		25		

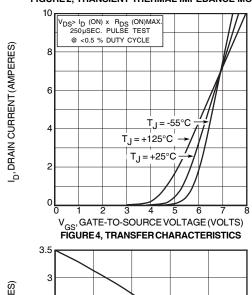
SOURCE-DRAIN DIODE RATINGS AND CHARACTERISTICS

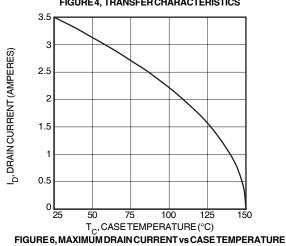
Symbol	Characteristic / Test Conditions		MIN	TYP	MAX	UNIT
I _S	Continuous Source Current (Body Diode)				3.5 Amps	
I _{SM}	Pulsed Source Current (1) (Body Diode)				14	Allips
V _{SD}	Diode Forward Voltage ② (V _{GS} = 0V, I _S = -I _D 3.5A)				1.3	Volts
dv/ _{dt}	Peak Diode Recovery dv/dt 5				18	V/ns
t _{rr}	Reverse Recovery Time	T _j = 25°C			250	
	$(I_S = -I_D 3.5A, \frac{di}{dt} = 100A/\mu s)$	T _j = 125°C			515	ns
Q _{rr}	Reverse Recovery Charge	T _j = 25°C		0.5		
	$(I_S = -I_D 3.5A, di/dt = 100A/\mu s)$	T _j = 125°C		1.1		μC
I _{RRM}	Peak Recovery Current	T _j = 25°C		8.3		A
	$(I_S = -I_D 3.5A, \frac{di}{dt} = 100A/\mu s)$	T _j = 125°C		11.5		Amps

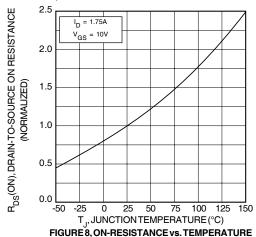

THERMAL CHARACTERISTICS

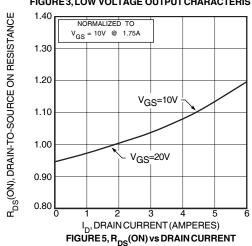

Symbol	Characteristic	MIN	TYP	MAX	UNIT
$R_{ hetaJC}$	Junction to Case			0.90	00044
$R_{\theta JA}$	Junction to Ambient			40	°C/W

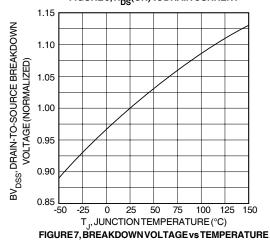
- 1 Repetitive Rating: Pulse width limited by maximum junction temperature
- 2 Pulse Test: Pulse width < 380 µs, Duty Cycle < 2%
- ③ See MIL-STD-750 Method 3471

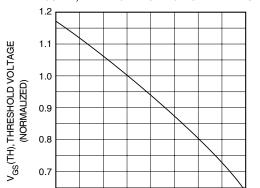

- 4 Starting $T_j = +25$ °C, L = 69.39mH, $R_G = 25\Omega$, Peak $I_L = 3.5A$
- $\textcircled{5}\ ^{\text{dv}}\!/_{\text{dt}}$ numbers reflect the limitations of the test circuit rather than the device itself. $I_S \le -I_D 3.5 A \frac{di}{dt} \le 700 A/\mu s \quad V_R \le 1200 \quad T_J \le 150 ^{\circ} C$
- 6 Eon includes diode reverse recovery. See figures 18, 20.


 $Microsemi\,reserves\,the\,right\,to\,change, without\,notice, the\,specifications\,and\,information\,contained\,herein.$




FIGURE 2, TRANSIENT THERMAL IMPEDANCE MODEL





V_{GS} =15,10 & 8V _{lp}, DRAIN CURRENT (AMPERES) 5V $\label{eq:VDS} V_{DS}, \text{DRAIN-TO-SOURCE VOLTAGE (VOLTS)} \\ \textbf{FIGURE 3, LOW VOLTAGE OUTPUT CHARACTERISTICS}$

25 0 25 50 75 100 T_C,CASETEMPERATURE(°C) 125 FIGURE 9, THRESHOLD VOLTAGE vs TEMPERATURE

0.6

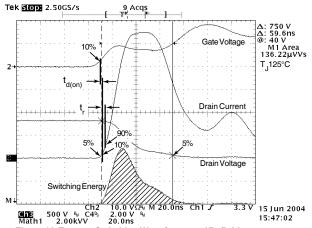
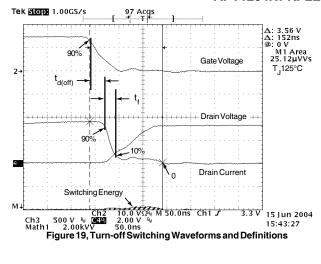



Figure 18, Turn-on Switching Waveforms and Definitions

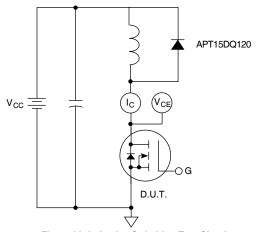
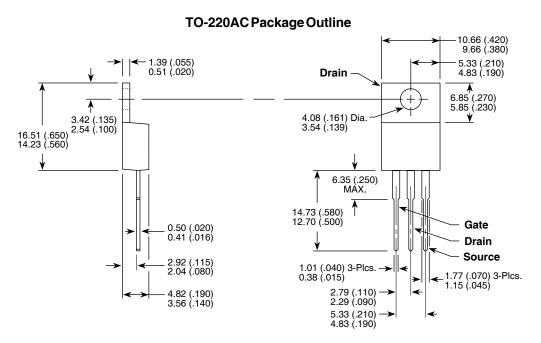



Figure 20, Inductive Switching Test Circuit

Dimensions in Millimeters and (Inches)