: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Phototriac coupler ideal for triac driver with wide variation

FEATURES

RoHS compliant

1. Low zero-cross voltage (max. 15 V) type added to lineup. Approximately $1 / 3$ of previous product
Helps reduce device noises even further.

2. Two types available: Random type and zero-cross type
3. Many package sizes available. (Wide terminal type with 10.16 mm pitch between I/O terminals available.) 4. High dielectric strength. (Between input and output: SOP 3, 750 V; DIP 5,000 V)
4. Handles both 100 and 200 V AC loads
This relay handles both voltages in a single product it is not necessary for users that use both types to manage separate part numbers.
5. Terminal 5 of the DIP 6-pin type is completely molded.
6. Complies with safety standards SOP4pin:
C-UL (UL1577) Certified
VDE (EN60747-5-5) Certified DIP4/6pin:
C-UL (UL1577) Certified
VDE (EN60747-5-5) Certified
VDE (EN60950-1, EN60065)
Reinforced insulation certified

TYPICAL APPLICATIONS

1. For triac driver in heater controls of products such as office equipment, home appliances, and industrial machines. (For 100V/200V, 50/60 Hz lines)
2. Triac driver for SSRs

TYPES

1. SOP4 Type

Type	Output rating		Type	Package size	Part No.			Packing quantity	
	Repetitive peak OFF-state voltage	ON-state RMS current			Tube packing style	Tape and re	packing style	Tube	Tape and reel
$\begin{gathered} \text { AC } \\ \text { type } \end{gathered}$	600 V	50 mA	$\begin{aligned} & \text { Zero-cross } \\ & (\max .50 \mathrm{~V}) \end{aligned}$	SOP4pin	APT1211S	APT1211SX (Picked from the 1/2-pin side)	APT1211SZ (Picked from the 3/4-pin side)		
			Zero-cross (max. 15 V)		APT1231S	APT1231SX (Picked from the 1/2-pin side)	APT1231SZ (Picked from the 3/4-pin side)	1 tube contains: 100 pcs. 1 batch contains: 2, 000 pcs.	1,000 pcs.
			Random		APT1221S	APT1221SX (Picked from the 1/2-pin side)	APT1221SZ (Picked from the $3 / 4$-pin side)		

[^0]
2. DIP4/6 Type

Type	Output rating		Type	Package size	Part No.				Packing quantity	
	Repetitive peak OFF-state voltage	ON-state RMS current			Through hole terminal		urface-mount term			
					Tube p	g style	Tape and ree	packing style	Tube	Tape and reel
$\begin{gathered} \mathrm{AC} \\ \text { type } \end{gathered}$	600 V	100 mA	Zero-cross (max. 50 V)	DIP4pin	APT1211	APT1211A	APT1211AX (Picked from the 1/2-pin side)	APT1211AZ (Picked from the 3/4-pin side)	[DIP4pin] 1 tube contains: 100 pcs. 1 batch contains: 1,000 pcs. [DIP6pin] 1 tube contains: 50 pcs. 1 batch contains: 500 pcs.	[DIP4pin] [DIP6pin] 1,000 pcs.
			Zero-cross (max. 15 V)		APT1231	APT1231A	APT1231AX (Picked from the 1/2-pin side)	APT1231AZ (Picked from the 3/4-pin side)		
			Random		APT1221	APT1221A	APT1221AX (Picked from the 1/2-pin side)	APT1221AZ (Picked from the 3/4-pin side)		
			$\begin{aligned} & \text { Zero-cross } \\ & (\max .50 \mathrm{~V}) \end{aligned}$	DIP6pin	APT1212	APT1212A	APT1212AX (Picked from the $1 / 2 / 3$-pin side)	APT1212AZ (Picked from the 4/6-pin side)		
			Zero-cross (max. 15 V)		APT1232	APT1232A	APT1232AX (Picked from the $1 / 2 / 3$-pin side)	APT1232AZ (Picked from the 4/6-pin side)		
			Random		APT1222	APT1222A	APT1222AX (Picked from the $1 / 2 / 3$-pin side)	APT1222AZ (Picked from the 4/6-pin side)		

Note: For space reasons the initial letters "APT" of the product number for the DIP 4-pin type, the letter "A", which indicates the SMD terminal shape for the DIP 4-pin and 6 -pin types, and the package type indications " X " and " Z " have been omitted from the product label. (Example: The label for product number APT1221AZ is 1221.)

3. DIP4/6 Wide Terminal Type

Type	Output rating*		Type	Package size	Part No.				Packing quantity	
	Repetitive peak OFF-state voltage	ON-state RMS current			Through hole terminal	Surface-mount terminal				
					Tube packing style		Tape and reel packing style		Tube	Tape and reel
$\begin{gathered} \text { AC } \\ \text { type } \end{gathered}$	600 V	100 mA	$\begin{aligned} & \text { Zero-cross } \\ & (\max .50 \mathrm{~V}) \end{aligned}$	DIP4pin	APT1211W	APT1211WA	APT1211WAY (Picked from the 1/4-pin side)	APT1211WAW (Picked from the 2/3-pin side)	[DIP4pin] 1 tube contains: 100 pcs. 1 batch contains: 1,000 pcs. [DIP6pin] 1 tube contains: 50 pcs. 1 batch contains: 500 pcs.	[DIP4pin] [DIP6pin] 1,000 pcs.
			Zero-cross (max. 15 V)		APT1231W	APT1231WA	APT1231WAY (Picked from the 1/4-pin side)	APT1231WAW (Picked from the 2/3-pin side)		
			Random		APT1221W	APT1221WA	APT1221WAY (Picked from the 1/4-pin side)	APT1221WAW (Picked from the 2/3-pin side)		
			Zero-cross (max. 50 V)		APT1212W	APT1212WA	APT1212WAY (Picked from the 1/6-pin side)	APT1212WAW (Picked from the 3/4-pin side)		
			Zero-cross (max. 15 V)	DIP6pin	APT1232W	APT1232WA	APT1232WAY (Picked from the 1/6-pin side)	APT1232WAW (Picked from the 3/4-pin side)		
			Random		APT1222W	APT1222WA	APT1222WAY (Picked from the $1 / 6$-pin side)	APT1222WAW (Picked from the 3/4-pin side)		

Note: For space reasons the initial letters "APT" of the product number for the DIP 4-pin type, the letter "WA", which indicates the SMD terminal shape for the DIP 4-pin and 6 -pin types, and the package type indications " Y " and "W" have been omitted from the product label. (Example: The label for product number APT1221WAY is 1221.)

RATING

1. Absolute maximum ratings (Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$)
1) SOP4 types

Item			Symbol	APT1211S, APT1221S, APT1231S	Remarks
Input	LED forward current		If	50 mA	
	LED reverse voltage		$V_{\text {R }}$	6 V	
	Peak forward current		Ifp	1 A	$\begin{aligned} & \mathrm{f}=100 \mathrm{~Hz}, \\ & \text { Duty Ratio }=0.1 \% \\ & \hline \end{aligned}$
Output	Repetitive peak OFF-state voltage		Vdrm	600 V	
	ON-state RMS current*		$\mathrm{It}_{\text {(RMS }}$	0.05 A	AC
	Non-repetitive surge current		Itsm	0.6 A	In one cycle at 60 Hz
Total power dissipation			$\mathrm{P}_{\text {T }}$	350 mW	
I/O isolation voltage			V iso	$3,750 \mathrm{~V}$ AC	
Temperature limits		Operating	Topr	$-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+212^{\circ} \mathrm{F}$	Non-condensing at low temperatures
		Storage	T stg	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+257^{\circ} \mathrm{F}$	

Note: " X " and " Z " at the end of the part numbers have been omitted.
2) DIP4/6 type and DIP4/6 Wide terminal type

Item			Symbol	APT1211(W), APT1221(W), APT1231(W), APT1212(W), APT1222(W), APT1232(W)	Remarks
Input	LED forward current		IF	50 mA	
	LED reverse voltage		V_{R}	6 V	
	Peak forward current		Ifp	1 A	$\begin{aligned} & \mathrm{f}=100 \mathrm{~Hz}, \\ & \text { Duty Ratio }=0.1 \% \end{aligned}$
Output	Repetitive peak OFF-state voltage		Vdrm	600 V	
	ON-state RMS current*		$1 I_{\text {(RMS }}$	0.1 A	AC
	Non-repetitive surge current		Itsm	1.2 A	In one cycle at 60 Hz
Total power dissipation			$\mathrm{P}_{\text {T }}$	500 mW	
I/O isolation voltage			V iso	$5,000 \mathrm{~V} \mathrm{AC}$	
Temperature limits		Operating	Topr	$-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+212^{\circ} \mathrm{F}$	Non-condensing at low temperatures
		Storage	$\mathrm{T}_{\text {stg }}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+257^{\circ} \mathrm{F}$	

Note: "A", "AX", "AZ" "AY" and "AW" at the end of the part numbers have been omitted.

* Do not exceed 0.05 A of ON state RMS current in case of following load voltage condition.

DIP4pin (APT1211, APT1221, APT1231) and DIP4pin wide terminal type (APT1211W, APT1221W, APT1231W): more than 100 V AC; DIP6pin (APT1212, APT1222, APT1232) and DIP6pin wide terminal type (APT1212W, APT1222W, APT1232W): more than 120 V AC.
2. Characteristics (Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$)

1) Zero-cross type (max. 50V) and random type

Item			Symbol	APT1211S, APT1211(W), APT1212(W)	APT1221S, APT1221(W), APT1222(W)	Condition
Input	LED dropout voltage	Typical	V_{F}	1.21 V		$I_{F}=20 \mathrm{~mA}$
		Maximum				
	LED reverse current	Typical	IR	-		$\mathrm{V}_{\mathrm{R}}=6 \mathrm{~V}$
		Maximum		$10 \mu \mathrm{~A}$		
Output	Repetitive peak OFF-state current	Typical	Idam	-		$\begin{aligned} & I_{F}=0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DRM}}=600 \mathrm{~V} \end{aligned}$
		Maximum		$1 \mu \mathrm{~A}$		
	Repetitive peak On-state voltage	Typical	$V_{\text {тм }}$	1.3 V		$\begin{aligned} & \mathrm{IF}=10 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{TM}}=0.05 \mathrm{~A} \end{aligned}$
		Maximum		2.5 V		
	Holding current	Typical	lH	0.3 mA		
		Maximum		3.5 mA		
	Critical rate of rise of OFF-state voltage	Minimum	dv/dt	$500 \mathrm{~V} / \mu \mathrm{s}$		V ${ }_{\text {drM }}=600 \mathrm{~V} \times 1 / \sqrt{2}$
Transfer characteristics	Trigger LED current	Maximum	Ift	10 mA		$\begin{aligned} & \mathrm{V}_{\mathrm{D}}=6 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=100 \Omega \end{aligned}$
	Zero-cross voltage	Maximum	Vzc	50 V	-	$\mathrm{IF}_{\mathrm{F}}=10 \mathrm{~mA}$
	Turn on time*	Maximum	Ton	$100 \mu \mathrm{~s}$		$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{D}}=6 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=100 \Omega \end{aligned}$
	I/O capacitance	Maximum	Ciso	1.5 pF		$\begin{aligned} & \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{B}}=0 \mathrm{~V} \end{aligned}$
	I/O isolation resistance	Minimum	Riso	$50 \mathrm{G} \Omega$		500 V DC

Notes: 1. For type of connection, see page 9.
2. Terminals are either solder plated or solder dipped.

*Turn on time

Output Input ——en

APT1

2) Zero-cross type (max. 15V)					
Item			Symbol	APT1231S, APT1231(W), APT1232(W)	Condition
Input	LED dropout voltage	Typical	V_{F}	1.21 V	$\mathrm{IF}=20 \mathrm{~mA}$
		Maximum		1.3 V	
	LED reverse current	Typical	In	-	$\mathrm{V}_{\mathrm{R}}=6 \mathrm{~V}$
		Maximum		$10 \mu \mathrm{~A}$	
Output	Repetitive peak OFF-state current	Typical	Idrm	-	$\begin{aligned} & \mathrm{IF}=0 \mathrm{~mA} \\ & \mathrm{~V} \text { DRM }=600 \mathrm{~V} \end{aligned}$
		Maximum		$1 \mu \mathrm{~A}$	
	Repetitive peak On-state voltage	Typical	$V_{\text {tm }}$	1.2 V	$\begin{aligned} & I_{F}=10 \mathrm{~mA} \\ & I_{T M}=0.03 \mathrm{~A} \end{aligned}$
		Maximum		2 V	
	Holding current	Typical	1 H	0.3 mA	
		Maximum		3.5 mA	
	Critical rate of rise of OFF-state voltage	Minimum	dv/dt	$500 \mathrm{~V} / \mu \mathrm{s}$	Vdrm $=600 \mathrm{~V} \times 1 / \sqrt{2}$
Transfer characteristics	Trigger LED current	Maximum	Ift	10 mA	$1 \mathrm{tm}=0.03 \mathrm{~A}$
	Zero-cross voltage	Maximum	Vzc	15 V	$\mathrm{IF}_{\mathrm{F}}=10 \mathrm{~mA}$
	Turn on time*	Maximum	Ton	$100 \mu \mathrm{~s}$	$\begin{aligned} & I_{F}=20 \mathrm{~mA} \\ & I_{T M}=0.03 \mathrm{~A} \end{aligned}$
	I/O capacitance	Maximum	Ciso	1.5 pF	$\begin{aligned} & f=1 \mathrm{MHz} \\ & V_{B}=0 \mathrm{~V} \end{aligned}$
	I/O isolation resistance	Minimum	Riso	$50 \mathrm{G} \Omega$	500 V DC

Notes: 1. For type of connection, see page 9.
2. Terminals are either solder plated or solder dipped.
*Turn on time
Output Input

RECOMMENDED OPERATING CONDITIONS

Please follow the conditions below in order to ensure accurate operation and release of the phototriac coupler.

Item	Symbol	Value	Unit
Input LED current	IF_{F}	20	mA

REFERENCE DATA

1-(1). ON-state RMS current vs. ambient temperature characteristics
Allowable ambient temperature: $-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$ $-40^{\circ} \mathrm{F}$ to $+212^{\circ} \mathrm{F}$
Tested sample: APT1211S, APT1221S

1-(2). ON-state RMS current vs. ambient temperature characteristics
Allowable ambient temperature: $-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Tested sample: APT1231S

1-(3). ON-state RMS current vs. ambient temperature characteristics
Allowable ambient temperature: $-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$ $-40^{\circ} \mathrm{F}$ to $+212^{\circ} \mathrm{F}$
Tested sample: APT1211(A), APT1221(A), APT1211W(A), APT1221W(A)

1-(4). ON-state RMS current vs. ambient temperature characteristics
Allowable ambient temperature: $-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$ $-40^{\circ} \mathrm{F}$ to $+212^{\circ} \mathrm{F}$
Tested sample: APT1231(A), APT1231W(A)

2. On voltage vs. ambient temperature

1-(5). ON-state RMS current vs. ambient temperature characteristics
Allowable ambient temperature: $-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$ $-40^{\circ} \mathrm{F}$ to $+212^{\circ} \mathrm{F}$
Tested sample: APT1212(A), APT1222(A), APT1212W(A), APT1222W(A)

3. Trigger LED current vs. ambient temperature characteristics

6. Repetitive peak OFF-state current vs. Load voltage characteristics

1-(6). ON-state RMS current vs. ambient temperature characteristics
Allowable ambient temperature: $-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{F}$ to $+212^{\circ} \mathrm{F}$
Tested sample: APT1232(A), APT1232W(A)

characteristics

5. Turn on time vs. LED current characteristics

8. Zero-cross voltage vs. ambient temperature characteristics

4. LED dropout voltage vs. ambient temperature characteristics

7. Hold current vs. ambient temperature characteristics

DIMENSIONS (mm inch)

CAD Data

External dimensions

Terminal thickness $=0.15 .006$
General tolerance: $\pm 0.1 \pm .004$
2. DIP4 Type

APT1211(A), APT1221(A), APT1231(A)

CAD Data

External dimensions

Through hole terminal type

C board pattern (BOTTOM VIEW)

Terminal thickness $=0.20 .008$
General tolerance: $\pm 0.1 \pm .004$
Recommended mounting pad (TOP VIEW)

3. DIP4 Wide Terminal Type

 APT1211W(A), APT1221W(A), APT1231W(A)

PC board pattern (BOTTOM VIEW)

Tolerance: $\pm 0.1 \pm .004$

Surface mount terminal type

Terminal thickness $=0.20 .008$
General tolerance: $\pm 0.1 \pm .004$

Recommended mounting pad (TOP VIEW)

Tolerance: $\pm 0.1 \pm .004$

4. DIP6 Type

APT1212(A), APT1222(A), APT1232(A)

CAD Data

External dimensions

Through hole terminal type

PC board pattern (BOTTOM VIEW)

Surface mount terminal type

Terminal thickness $=0.25 .010$
General tolerance: $\pm 0.1 \pm .004$
Recommended mounting pad (TOP VIEW)

5. DIP6 Wide Terminal Type

APT1212W(A), APT1222W(A), APT1232W(A)

CAD Data

Through hole terminal type

PC board pattern (BOTTOM VIEW)

Tolerance: $\pm 0.1 \pm .004$

Surface mount terminal type

Terminal thickness $=0.25 .010$
General tolerance: $\pm 0.1 \pm .004$
Recommended mounting pad (TOP VIEW)

Tolerance: $\pm 0.1 \pm .004$

SCHEMATIC AND WIRING DIAGRAMS

Notes: E_{1} : Power source at input side; IF: LED forward current; VL: Load voltage; IL: Load current

[^0]: Note: For space reasons, the initial letters of the product number "APT" and " S " are omitted on the product seal.
 The package type indicator " X " and " Z " are omitted from the seal. (Ex. the label for product number APT1221SZ is 1221).

