: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

N-Channel FREDFET

Power MOS $8^{\prime " m}$ is a high speed, high voltage N -channel switch-mode power MOSFET. This 'FREDFET' version has a drain-source (body) diode that has been optimized for high reliability in ZVS phase shifted bridge and other circuits through reduced trr, soft recovery, and high recovery dv/dt capability. Low gate charge, high gain, and a greatly reduced ratio of $\mathrm{C}_{\mathrm{rss}} / \mathrm{C}_{\text {iss }}$ result in excellent noise immunity and low switching loss. The intrinsic gate resistance and capacitance of the poly-silicon gate structure help control di/dt during switching, resulting in low EMI and reliable paralleling, even when switching at very high frequency.

Single die FREDFET

FEATURES

- Fast switching with low EMI
- Low t_{rr} for high reliability
- Ultra low $\mathrm{C}_{\text {rss }}$ for improved noise immunity
- Low gate charge
- Avalanche energy rated
- RoHS compliant

TYPICAL APPLICATIONS

- ZVS phase shifted and other full bridge
- Half bridge
- PFC and other boost converter
- Buck converter
- Single and two switch forward
- Flyback

Absolute Maximum Ratings

Symbol	Parameter	Ratings	Unit
I_{D}	Continuous Drain Current @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	14	
	Continuous Drain Current @ $\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$	9	A
I_{DM}	Pulsed Drain Current ${ }^{(1)}$	50	
$\mathrm{~V}_{\mathrm{GS}}$	Gate-Source Voltage	± 30	V
$\mathrm{E}_{\text {AS }}$	Single Pulse Avalanche Energy ${ }^{(2)}$	1070	mJ
$\mathrm{I}_{\text {AR }}$	Avalanche Current, Repetitive or Non-Repetitive	7	A

Thermal and Mechanical Characteristics

Symbol	Characteristic	Min	Typ	Max	Unit
P_{D}	Total Power Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$			625	W
$\mathrm{R}_{\text {өJC }}$	Junction to Case Thermal Resistance			0.20	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {өCS }}$	Case to Sink Thermal Resistance, Flat, Greased Surface		0.11		
$\mathrm{T}_{\mathrm{J}, \mathrm{T}_{\text {STG }}}$	Operating and Storage Junction Temperature Range	-55		150	${ }^{\circ} \mathrm{C}$
T_{L}	Soldering Temperature for 10 Seconds (1.6mm from case)			300	
W_{T}	Package Weight		0.22		oz
			6.2		g
Torque	Mounting Torque (TO-247 Package), 6-32 or M3 screw			10	in $\cdot \mathrm{lbf}$
				1.1	$\mathrm{N} \cdot \mathrm{m}$

Static Characteristics
$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ unless otherwise specified
APT13F120B_S

Symbol	Parameter	Test Conditions		Min	Typ	Max	Unit
$\mathrm{V}_{\text {BR(DSS }}$	Drain-Source Breakdown Voltage	$\mathrm{V}_{\text {GS }}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$		1200			V
$\Delta \mathrm{V}_{\mathrm{BR}(\mathrm{DSS})} / \Delta \mathrm{T}_{\mathrm{J}}$	Breakdown Voltage Temperature Coefficient	Reference to $25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$			1.41		$\mathrm{V} /{ }^{\circ} \mathrm{C}$
$\mathrm{R}_{\mathrm{DS} \text { (on) }}$	Drain-Source On Resistance ${ }^{(3)}$	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=7 \mathrm{~A}$. 91	1.2	Ω
$\mathrm{V}_{\text {GS(th) }}$	Gate-Source Threshold Voltage	$V_{G S}=V_{D S}, I_{D}=1 \mathrm{~mA}$		2.5	4	5	V
$\Delta \mathrm{V}_{\mathrm{GS}(\text { (h) })} / \Delta \mathrm{T}_{\mathrm{J}}$	Threshold Voltage Temperature Coefficient				-10		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
$\mathrm{I}_{\text {DSS }}$	Zero Gate Voltage Drain Current	$\mathrm{V}_{\text {DS }}=1200 \mathrm{~V}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$			250	$\mu \mathrm{A}$
		$V_{G S}=0 \mathrm{~V}$	$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$			1000	
$\mathrm{I}_{\text {Gss }}$	Gate-Source Leakage Current	$\mathrm{V}_{\mathrm{GS}}= \pm 30 \mathrm{~V}$				± 100	nA

Dynamic Characteristics

$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ unless otherwise specified

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
$\mathrm{g}_{\text {fs }}$	Forward Transconductance	$\mathrm{V}_{\mathrm{DS}}=50 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=7 \mathrm{~A}$		15		S
$\mathrm{C}_{\text {iss }}$	Input Capacitance	$\begin{gathered} V_{G S}=0 \mathrm{~V}, V_{D S}=25 \mathrm{~V} \\ f=1 \mathrm{MHz} \end{gathered}$		4765		pF
$\mathrm{C}_{\text {rss }}$	Reverse Transfer Capacitance			55		
$\mathrm{C}_{\text {oss }}$	Output Capacitance			350		
$\mathrm{C}_{\mathrm{o}(\mathrm{cr})}{ }^{(4)}$	Effective Output Capacitance, Charge Related	$V_{G S}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$ to 800 V		135		
$\mathrm{C}_{\mathrm{o}(\text { (er) }}{ }^{\text {5 }}$	Effective Output Capacitance, Energy Related			70		
Q_{g}	Total Gate Charge	$\begin{gathered} V_{G S}=0 \text { to } 10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=7 \mathrm{~A}, \\ V_{D S}=600 \mathrm{~V} \end{gathered}$		145		nC
$Q_{\text {gs }}$	Gate-Source Charge			24		
Q_{gd}	Gate-Drain Charge			70		
$\mathrm{t}_{\mathrm{d}(\mathrm{on})}$	Turn-On Delay Time	Resistive Switching$\begin{gathered} V_{D D}=800 \mathrm{~V}, I_{D}=7 \mathrm{~A} \\ R_{G}=4.7 \Omega^{6}, V_{G G}=15 \mathrm{~V} \end{gathered}$		26		ns
t_{r}	Current Rise Time			15		
$\mathrm{t}_{\mathrm{d} \text { (off) }}$	Turn-Off Delay Time			85		
t_{f}	Current Fall Time			24		

Source-Drain Diode Characteristics

Symbol	Parameter	Test Conditions		Min	Typ	Max	Unit
I_{s}	Continuous Source Current (Body Diode)	MOSFET symbol showing the integral reverse p-n junction diode (body diode)				14	A
$I_{\text {SM }}$	Pulsed Source Current (Body Diode) ${ }^{(1)}$					50	
$\mathrm{V}_{\text {SD }}$	Diode Forward Voltage	$\mathrm{I}_{\text {SD }}=7 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$				1.2	V
t_{rr}	Reverse Recovery Time	$\begin{aligned} \mathrm{I}_{\mathrm{SD}} & =7 \mathrm{~A}^{3} \\ \mathrm{di}_{\mathrm{SD}} / \mathrm{dt} & =100 \mathrm{~A} / \mu \mathrm{s} \\ \mathrm{~V}_{\mathrm{DD}} & =100 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$			250	ns
			$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$			520	
$Q_{\text {rr }}$	Reverse Recovery Charge		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		1.12		$\mu \mathrm{C}$
			$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$		3.03		
$I_{\text {rmm }}$	Reverse Recovery Current		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		10		A
			$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$		13.5		
dv/dt	Peak Recovery dv/dt	$\begin{gathered} \mathrm{I}_{\mathrm{SD}} \leq 7 \mathrm{~A}, \mathrm{di} / \mathrm{dt} \leq 1000 \mathrm{~A} / \mu \mathrm{s}, \mathrm{~V}_{\mathrm{DD}}=800 \mathrm{~V}, \\ \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C} \end{gathered}$				25	V/ns

(1) Repetitive Rating: Pulse width and case temperature limited by maximum junction temperature.
(2) Starting at $T_{J}=25^{\circ} \mathrm{C}, \mathrm{L}=43.59 \mathrm{mH}, \mathrm{R}_{\mathrm{G}}=25 \Omega, \mathrm{I}_{\mathrm{AS}}=7 \mathrm{~A}$.
(3) Pulse test: Pulse Width $<380 \mu \mathrm{~s}$, duty cycle $<2 \%$.
(4) $\mathrm{C}_{\text {o(rr) }}$ is defined as a fixed capacitance with the same stored charge as $\mathrm{C}_{\text {oss }}$ with $\mathrm{V}_{\text {DS }}=67 \%$ of $\mathrm{V}_{\text {(BR) DSs }}$.
(5) $C_{o(e r)}$ is defined as a fixed capacitance with the same stored energy as $C_{\text {OsS }}$ with $V_{D S}=67 \%$ of $V_{\text {(BR)DSS. }}$. To calculate $C_{o(e r)}$ for any value of $V_{D S}$ less than $V_{(B R) D S S}$, use this equation: $C_{o(e r)}=-2.17 E-7 / V_{D S}{ }^{\wedge} 2+2.63 E-8 / V_{D S}+3.74 E-11$.
(6) R_{G} is external gate resistance, not including internal gate resistance or gate driver impedance. (MIC4452)

Microsemi reserves the right to change, without notice, the specifications and information contained herein.

Figure 1，Output Characteristics

Figure 3， $\mathbf{R}_{\mathrm{DS}(\mathrm{ON})}$ vs Junction Temperature

Figure 5，Gain vs Drain Current

Figure 2，Output Characteristics

Figure 4，Transfer Characteristics

Figure 6，Capacitance vs Drain－to－Source Voltage

Figure 8，Reverse Drain Current vs Source－to－Drain Voltage

Figure 9, Forward Safe Operating Area
Figure 10, Maximum Forward Safe Operating Area

Figure 11. Maximum Effective Transient Thermal Impedance Junction-to-Case vs Pulse Duration

TO-247 (B) Package Outline

(e1) SAC: Tin, Silver, Copper
D^{3} PAK Package Outline
(e3) 100% Sn Plated

Dimensions in Millimeters (Inches)

