

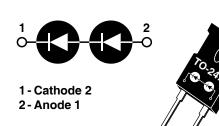
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832


Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

APT15DS60BG 600V 13A APT15DS60SG **13A** 600V

*G Denotes RoHS Compliant, Pb Free Terminal Finish.

2-300V HIGH FREQUENCY SOFT RECOVERY RECTIFIER DIODES IN SERIES

PRODUCT APPLICATIONS PRODUCT FEATURES

PRODUCT BENEFITS

- Anti-Parallel Diode
 - -Switchmode Power Supply
 - -Inverters
- Free Wheeling Diode
 - -Motor Controllers
 - -Converters
- Snubber Diode
- Uninterruptible Power Supply (UPS) High Blocking Voltage
- Induction Heating
- High Speed Rectifiers

- Ultrafast Recovery Times
- Soft Recovery Characteristics
- Popular TO-247 Package or Surface Mount D3PAK Package
- Low Forward Voltage
- Low Leakage Current

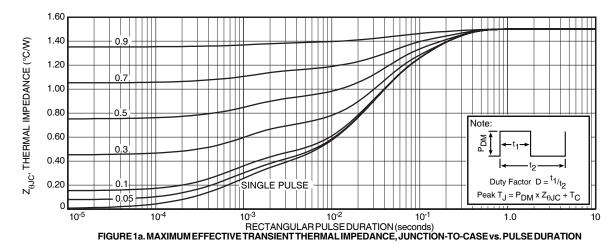
- Low Losses
- Low Noise Switching
- Cooler Operation
- Higher Reliability Systems
- Increased System Power Density

MAXIMUM RATINGS

All Ratings: $T_C = 25^{\circ}C$ unless otherwise specified.

Symbol	Characteristic / Test Conditions	APT15DS60B_SG	UNIT	
V _R	Maximum D.C. Reverse Voltage			
V _{RRM}	Maximum Peak Repetitive Reverse Voltage	600	Volts	
V _{RWM}	Maximum Working Peak Reverse Voltage			
I _F (AV)	Maximum Average Forward Current (T _C = 77°C, Duty Cycle = 0.5)	13		
I _F (RMS)	RMS Forward Current (Square wave, 50% duty)	17	Amps	
I _{FSM}	Non-Repetitive Forward Surge Current (T _J = 45°C, 8.3ms)	110		
T_J , T_{STG}	Operating and StorageTemperature Range	-55 to 150	°C	
T _L	Lead Temperature for 10 Sec.	300	10	

STATIC ELECTRICAL CHARACTERISTICS


Symbol			MIN	TYP	MAX	UNIT
V _F		I _F = 15A		3.2	4.0	Volts
		I _F = 30A		4.2		
		I _F = 15A, T _J = 125°C		2.4		
I _{RM}	Maximum Reverse Leakage Current	V _R = 600V			150	- μΑ
		V _R = 600V, T _J = 125°C			500	
C _T	Junction Capacitance, V _R = 200V			24		pF

Symbol	Characteristic	Test Conditions	MIN	TYP	MAX	UNIT
t _{rr}	Reverse Recovery Time $I_F = 1A$, $di_F/dt =$	covery Time $I_F = 1A$, $di_F/dt = -100A/\mu s$, $V_R = 30V$, $T_J = 25^{\circ}C$		13		ns
t _{rr}	Reverse Recovery Time	I _F = 15A, di _F /dt = -200A/μs V _R = 400V, T _C = 25°C	-	14		115
Q_{rr}	Reverse Recovery Charge		-	12		nC
I _{RRM}	Maximum Reverse Recovery Current		-	1.5	-	Amps
t _{rr}	Reverse Recovery Time	I _F = 15A, di _F /dt = -200A/μs V _R = 400V, T _C = 125°C	-	31		ns
Q _{rr}	Reverse Recovery Charge		ı	85		nC
I _{RRM}	Maximum Reverse Recovery Current		ı	4.7	-	Amps
t _{rr}	Reverse Recovery Time	$I_F = 15A$, $di_F/dt = -1000A/\mu s$ $V_R = 400V$, $T_C = 125^{\circ}C$	-	20		ns
Q _{rr}	Reverse Recovery Charge		-	160		nC
I _{RRM}	Maximum Reverse Recovery Current		-	18		Amps

THERMAL AND MECHANICAL CHARACTERISTICS

Symbol	Characteristic / Test Conditions	MIN	TYP	MAX	UNIT
$R_{ hetaJC}$	Junction-to-Case Thermal Resistance			1.5	°C/W
R_{\thetaJA}	Junction-to-Ambient Thermal Resistance			40	
W _T	Package Weight		0.22		oz
			5.9		g
Torque	Maximum Mounting Torque			10	lb•in
				1.1	N•m

APT Reserves the right to change, without notice, the specifications and information contained herein.

Dissipated Power (Watts)

Dissipated Power (

TYPICAL PERFORMANCE CURVES

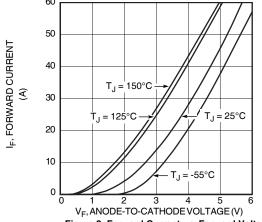


Figure 2. Forward Current vs. Forward Voltage

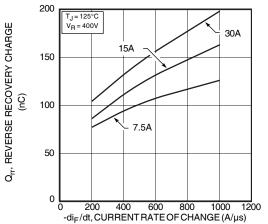


Figure 4. Reverse Recovery Charge vs. Current Rate of Change

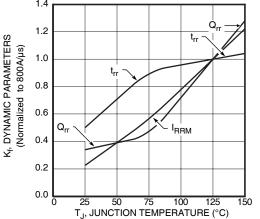


Figure 6. Dynamic Parameters vs. Junction Temperature

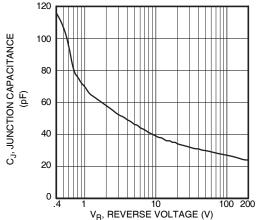
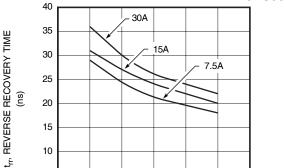



Figure 8. Junction Capacitance vs. Reverse Voltage

10

5

T_J = 125°C V_R = 400V

200

400

APT15DS60B SG

-di_F/dt, CURRENT RATE OF CHANGE(A/μs) Figure 3. Reverse Recovery Time vs. Current Rate of Change

800

1000

600



Figure 5. Reverse Recovery Current vs. Current Rate of Change

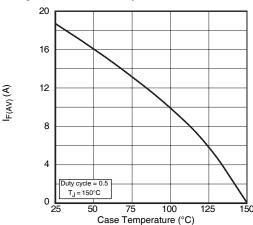
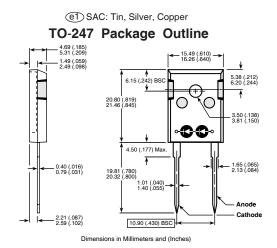


Figure 7. Maximum Average Forward Current vs. CaseTemperature

0.25 I_{RRM}


4

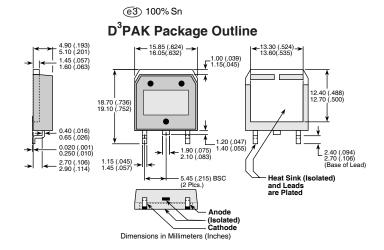

6

Figure 9. Diode Test Circuit

- 1 I_F Forward Conduction Current
 2 di_F/dt Rate of Diode Current Change Through Zero Crossing.
 - 3 I_{RRM} Maximum Reverse Recovery Current.
- 4 t_{rr} Reverse Recovery Time, measured from zero crossing where diode current goes from positive to negative, to the point at which the straight line through I_{RRM} and 0.25•I_{RRM} passes through zero.
- $\mathbf{5}$ \mathbf{Q}_{rr} Area Under the Curve Defined by \mathbf{I}_{RRM} and \mathbf{t}_{rr} .

Figure 10, Diode Reverse Recovery Waveform and Definitions

