

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

200V, **56A**, **0.045** Ω

POWER MOS V®

POWER MOS V® is a new generation of high voltage N-Channel enhancement mode power MOSFETs. This new technology minimizes the JFET effect, increase packing density and reduces the on-resistance. Power MOS V® also achieves faster switching speeds through optimized gate layout.

FEATURES

- · Faster switching
- · Lower Leakage
- · 100% Avalanche tested
- Popular TO-247 Package
- RoHS compliant

APT20M45BVR(G)

Absolute Maximum Ratings

All Ratings: T_c = 25°C unless otherwise specified.

Symbol	Parameter	Ratings	Unit	
V _{DSS}	Drain Source Voltage	200	Volts	
I _D	Continuous Drain Current @ T _c = 25°C	56	Amno	
I _{DM}	Pulsed Drain Current ¹	224	Amps	
V _{GS}	Gate-Source Voltage Continuous	±30	Volts	
$V_{\rm GSM}$	Gate-Source Voltage Transient	±40		
D D	Total Power Dissipation @ T _c = 25°C	300	Watts	
P _D	Linear Derating Factor	2.4	W/C°	
T _J , T _{STG}	Operating and Storage Junction Temperature Range	-55 to 150	°C	
T _L	Lead Temperature for Soldering: 0.063" from Case for 10 Seconds	300		
l _{AR}	Avalanche Current ¹ (Repetitive and Non-Repatitive)	56	Amps	
E _{AR}	Repetitive Avalanche Energy ¹	30		
E _{AS}	Single Pulse Avalanche Energy ⁴	1300	mJ	

Static Characteristics

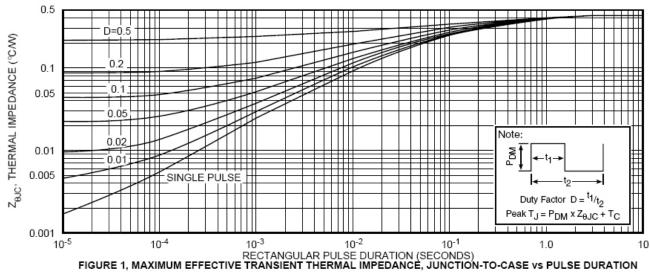
T_J = 25°C unless otherwise specified

Symbol	Parameter	Min	Тур	Max	Unit
BV _{DSS}	Drain-Source Breakdown Voltage (V _{GS} = 0V, I _D = 250µA)	200			Volts
I _{D(on)}	On State Drain Current ² (V _{DS} > I _{D(on)} x R _{DS(on)} Max, V _{GS} = 10V)	56			Amps
R _{DS(on)}	Drain-Source On-State Resistance ² (V _{GS} = 10V, 0.5 I _{D[Cont.]})			0.045	Ohms
I _{DSS}	Zero Gate Voltage Drain Current (V _{DS} = V _{DSS} , V _{GS} = 0V)			25	
	Zero Gate Voltage Collector Current (V _{GS} = 0.8 V _{DSS} , V _{GS} = 0V, T _C = 125°C)			250	μA
I _{GSS}	Gate-Source Leakage Current (V _{GS} = ±30V, V _{DS} = 0V)			±100	nA
$V_{GS(th)}$	Gate Threshold Voltage (V _{DS} = V _{GS} , I _D = 1.0mA)	2		4	Volts

CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.

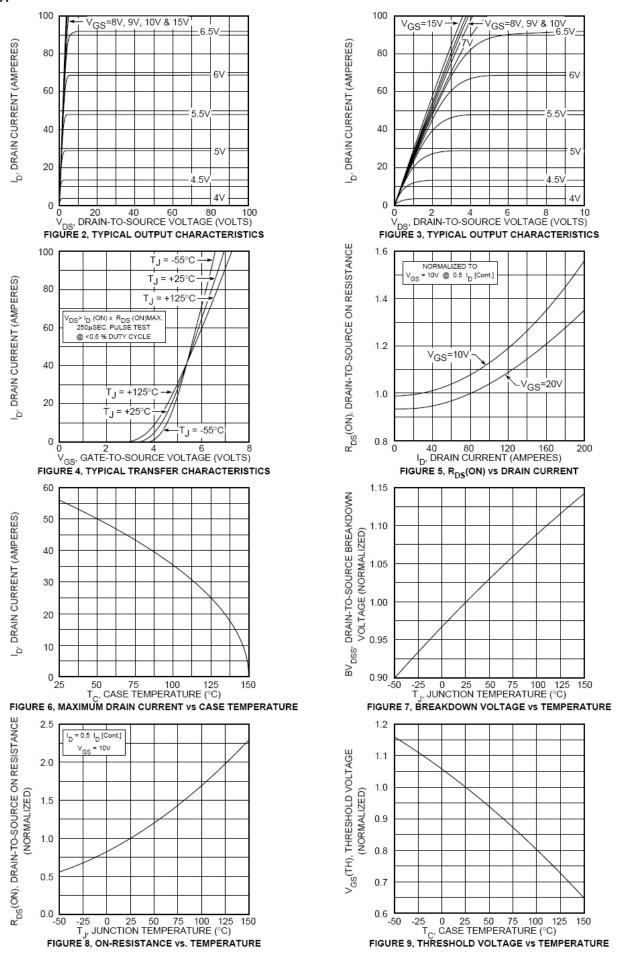
Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
C_{iss}	Input Capacitance	V _{GS} = 0V		4050	4860	
C _{oss}	Output Capacitance	V _{DS} = 25V		980	1375	,,,
C _{rss}	Reverse Transfer Capacitance	f = 1MHz		300	450	pF
Q_g	Total Gate Charge ¹	V _{GS} = 10V		130	195	
Q_{ge}	Gate-Source Charge	$V_{DD} = 0.5 V_{DSS}$		30	45	nC
Q_{gd}	Gate- Drain ("Miller") Charge	I _D = I _{D[cont.]} @ 25°C		55	80	IIC
t _{d(on)}	Turn-on Delay Time	V _{GS} = 10V		12	24	
t,	Rise Time	$V_{DD} = 0.5 V_{DSS}$		14	28	
t _{d(off)}	Turn-off Delay Time	$I_D = I_{D[cont.]} @ 25^{\circ}C$		43	70	ns
t _r	Fall Time	$R_{_{\rm G}}$ = 1.6 Ω		7	14	

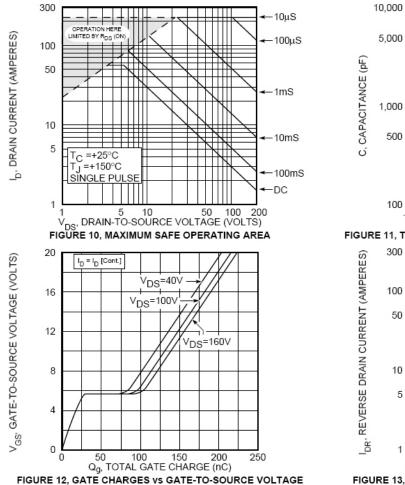
Source-Drain Diode Ratings and Characteristics

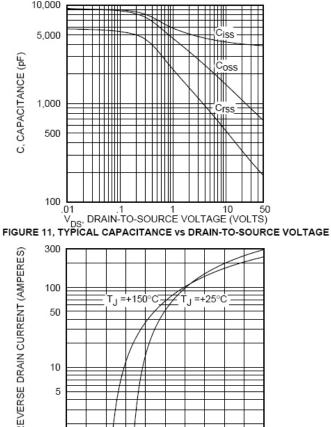

Symbol	Characteristic / Test Conditions	Min	Тур	Max	Unit
I _s	Continuous Source Current (Body Diode)			56	Amps
I _{SM}	Pulse Source Current ¹ (Body Diode)			224	Allips
V _{SD}	Diode Forward Voltage ² (V _{GS} = 0V, I _S = -I _{D[Cont.]})			1.3	Volts
t _{rr}	Reverse Recovery Time ($I_s = -I_{D[Cont.]}$, $dI_s/dt = 100A/\mu s$)		280		nS
$Q_{rr)}$	Reverse Recovery Time ($I_s = -I_{D[Cont.]}$, $dI_s/dt = 100A/\mu s$)		3.5		μC

Thermal Characteristics

S	ymbol	Characteristic	Min	Тур	Max	Unit
	$R_{\theta JC}$	Junction to Case			0.42	0 000
	$R_{\theta JA}$	Junction to Ambient			40	C °/W


 $^{^{\}scriptsize \textcircled{\scriptsize 1}}$ Repetitive Rating: Pulse width limited by maximum junction temperature.

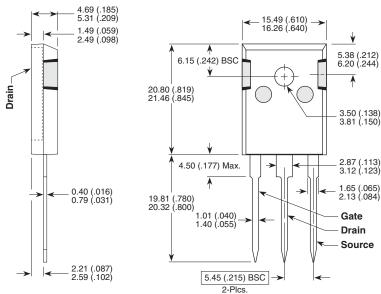

Microsemi Reserves the right to change, without notice, the specifications and information contained herein.



 $[\]stackrel{\textcircled{3}}{=}$ See MIL-STD-750 Method 3471 $\stackrel{\textcircled{4}}{=}$ Starting T $_{\rm I}$ = +25°C, L = 830µH, R $_{\rm G}$ = 25Ω, Peak I $_{\rm L}$ = 56A

 $^{^{\}circ}$ Pulse Test: Pulse width < 380 μ S, Duty Cycle < 2%

V_{SD}, SOURCE-TO-DRAIN VOLTAGE (VOLTS)
FIGURE 13, TYPICAL SOURCE-DRAIN DIODE FORWARD VOLTAGE


1.2

0.8

0.4

TO-247 (B) Package Outline

e3 100% Sn Plated

Dimensions in Millimeters and (Inches)