

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Ultrafast Soft Recovery Dual Rectifier Diode

PRODUCT APPLICATIONS

- · Anti-Parallel Diode
 - -Switchmode Power Supply -Inverters
- Free Wheeling Diode
 - Motor Controllers - Converters
- · Snubber Diode
- · Uninterruptible Power Supply
- · Induction Heating
- High Speed Rectifiers

PRODUCT FEATURES

- Ultrafast Recovery Times (t_{rr})
- Soft Recoverery Characteristics Low Noise Switching
- Low Forward Voltage
- · Low Forward Voltage
- High Blocking Voltage
- · Low Leakage Current

PRODUCT BENEFITS

- Low Losses
- · Cooler Operation
- · Higher Reliability Systems
- · Increased System Power Density

APT2X101DL40J

MAXIMUM RATINGS

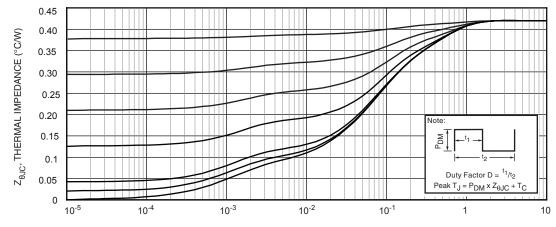
All Ratings per Diode: $T_C = 25^{\circ}C$ unless otherwise specified.

Symbol	Characteristic / Test Conditions	Ratings	Unit
V_R	Maximum D.C. Reverse Voltage		
V_{RRM}	Maximum Peak Repetitive Reverse Voltage	400	Volts
V_{RWM}	Maximum Working Peak Reverse Voltage		
I _{F(AV)}	Maximum Average Forward current (T _c = 127°C, Duty Cycle = 0.5)	100	
I _{F(RMS)}	RMS Forward Currrent (Square wave, 50% duty)	204	Amps
I _{FSM}	Non-Repetitive Forward Surge Current (T _J = 45°C, 8.3 ms)	1000	
T _J , T _{STG}	Operating and Storage Junction Temperature Range	-55 to 175	°C

STATIC ELECTRICAL CHARACTERISTICS

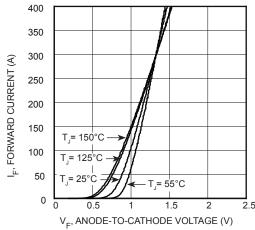
Symbol	Characteristic / Test Conditions		Min	Тур	Max	Unit
V _F	Forward Voltage	I _F = 100A		1.0	1.125	- Volts
		I _F = 150A		1.1		
		I _F = 200A		1.2		
		I _F = 100A, T _J = 150°C			.95	
I _{RM}	Maximum Reverse Leakage Current	V _R = 400V			500	μА
		V _R = 400V, T _J = 125°C			1000	
C _T	Junction Capacitance, V _R = 200V			215		pF
L _s	Series Inductance _Lead to Lead 5mm from Base)			10		nH

DYNAMIC CHARACTERISTICS


APT2X101DL40J

Symbol	Characteristic / Test Conditions		Min	Тур	Max	Unit
t _{rr}	Reverse Recovery Time $I_F = 1A$, $di_F/dt = -100A/\mu s$,	$V_{R} = 30V, T_{J} = 25^{\circ}C$		40		no
t _{rr}	Reverse Recovery Time	I _F = 100A, di _F /dt = -200A/µs V _R = 268V, T _C = 25°C		120		ns
Q _{rr}	Reverse Recovery Charge			830		nC
I _{RRM}	Maximum Reverse Recovery Current			13		Amps
t _{rr}	Reverse Recovery Time	I _F = 100A, di _F /dt = -200A/μs V _R = 268V, T _C = 125°C		240		ns
Q _{rr}	Reverse Recovery Charge			3500		nC
I _{RRM}	Maximum Reverse Recovery Current			25		Amps
t _{rr}	Reverse Recovery Time	I _F = 100A, di _F /dt = -1000A/ μs V _R = 268V, T _C = 125°C		160		ns
Q _{rr}	Reverse Recovery Charge			6600		nC
I _{RRM}	Maximum Reverse Recovery Current			76		Amps

THERMAL AND MECHANICAL CHARACTERISTICS


Symbol	Characteristic / Test Conditions	Min	Тур	Max	Unit
R _{eJC}	Junction-to-Case Thermal Resistance			0.42	°C/W
R _{eJA}	Junction-to-Ambient Thermal Resistance			20	
W _T	Package Weight		1.03		OZ
			29.2		g
Torque	Maximum Mounting Torque			10	lb∙in
				1.1	N·m

 ${\bf Microsemi\ reserves\ the\ right\ to\ change,\ without\ notice,\ the\ specifications\ and\ information\ contained\ herein.}$

RECTANGULAR PULSE DURATION (seconds)
FIGURE 1. MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs. PULSE DURATION

TYPICAL PERFORMANCE CURVES

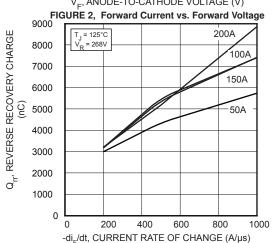
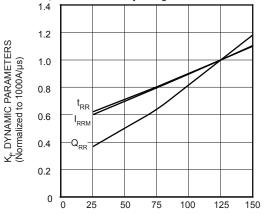



FIGURE 4, Reverse Recovery Charge vs. Current Rate of Change

 $\label{eq:tj} T_J, JUNCTION \, TEMPERATURE \, (^\circC)$ FIGURE 6, $\,$ Dynamic Parameters vs Junction Temperature

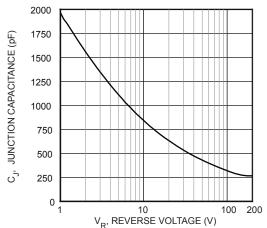


FIGURE 8, Junction Capacitance vs. Reverse Voltage

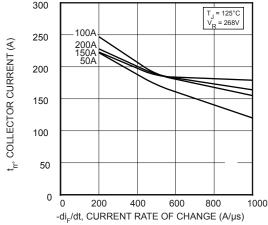


FIGURE 3, Reverse Recovery Time vs. Current Rate of Change

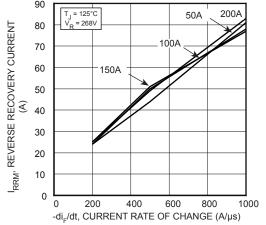


FIGURE 5, Reverse Recovery Current vs. Current Rate of Change

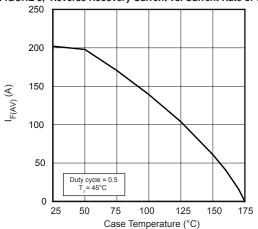


FIGURE 7, Maximum Average Forward Current vs. Case Temperature

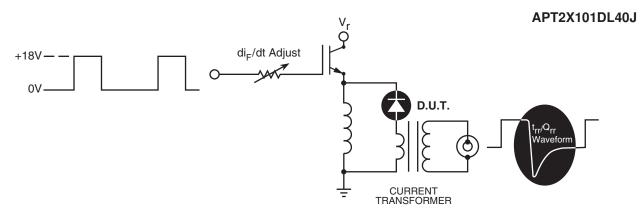
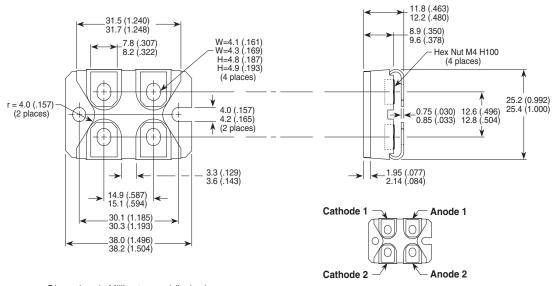


Figure 9. Diode Test Circuit

0.25 I_{RRM}


Slope = di_M/dt

[3]

- I_F Forward Conduction Current
- 2 di_F/dt Rate of Diode Current Change Through Zero Crossing.
- 3 I_{RRM} Maximum Reverse Recovery Current.
- 4 t_{rr} Reverse Recovery Time, measured from zero crossing where diode current goes from positive to negative, to the point at which the straight line through I_{RRM} and 0.25•I_{RRM} passes through zero.
- $\mathbf{5}$ \mathbf{Q}_{rr} Area Under the Curve Defined by \mathbf{I}_{RRM} and \mathbf{t}_{rr} .
- 6 di_M/dt Maximum Rate of Current Increase During the Trailing Portion of t_{rr}.

Figure 10, Diode Reverse Recovery Waveform and Definitions

SOT-227 (ISOTOP®) Package Outline

Dimensions in Millimeters and (Inches)