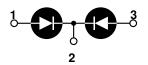
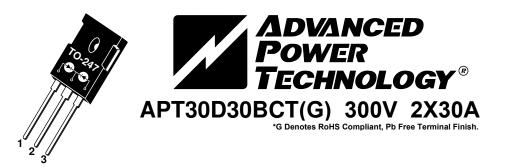
mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.


We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!


Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

- 1 Anode 1
- 2 Common Cathode Back of Case - Cathode
- 3 Anode 2

ULTRAFAST SOFT RECOVERY RECTIFIER DIODE

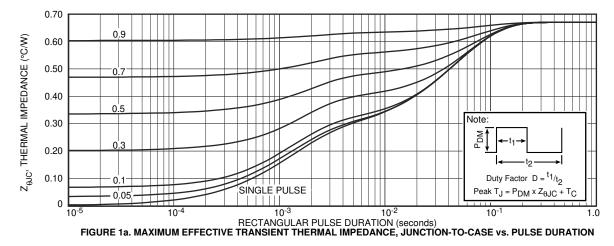
PRODUCT APPLICATIONS	PRODUCT FEATURES	PRODUCT BENEFITS
Parallel Diode	 Ultrafast Recovery Times 	Low Losses
-Switchmode Power Supply -Inverters	Soft Recovery Characteristics	Low Noise Switching
 Free Wheeling Diode Motor Controllers 	Popular TO-247 Package	Cooler Operation
-Converters	Low Forward Voltage	 Higher Reliability Systems
 Uninterruptible Power Supply (UPS) Induction Heating 	High Blocking Voltage	Increased System Power Density
High Speed Rectifiers	Low Leakage Current	Density

MAXIMU	IAXIMUM RATINGS All Ratings Are Per Leg: T _C = 25°C unless otherwise spec					
Symbol	Characteristic / Test Conditions	APT30D30BCT(G)	UNIT			
V _R	Maximum D.C. Reverse Voltage					
V _{RRM}	Maximum Peak Repetitive Reverse Voltage	300	Volts			
V _{RWM}	Maximum Working Peak Reverse Voltage					
I _F (AV)	Maximum Average Forward Current ($T_{c} = 119^{\circ}C$, Duty Cycle = 0.5)	30				
I _F (RMS)	RMS Forward Current (Square wave, 50% duty)	70	Amps			
I _{FSM}	Non-Repetitive Forward Surge Current ($T_{I} = 45^{\circ}$ C, 8.3ms)	320				
T _J ,T _{STG}	Operating and StorageTemperature Range	-55 to 150				
Τ _L	Lead Temperature for 10 Sec.	300	°C			

STATIC ELECTRICAL CHARACTERISTICS

Symbol			MIN	ТҮР	МАХ	UNIT
V _F	Forward Voltage	I _F = 30A		1.2	1.4	Volts
		I _F = 60A		1.5		
		I _F = 30A, T _J = 125°C		1.0		
I _{RM} Ma:	Maximum Reverse Leakage Current	V _R = V _R Rated			250	μA
		$V_{R} = V_{R}$ Rated, $T_{J} = 125^{\circ}C$			500	
С _т	Junction Capacitance, V _B = 200V			80		pF

DYNAMIC CHARACTERISTICS


APT30D30BCT

Symbol	Characteristic	Test Conditions	MIN	ТҮР	МАХ	UNIT
t _{rr}	Reverse Recovery Time $I_F = 1A$, $di_F/dt = -100A/\mu s$, $V_R = 30V$, $T_J = 25^{\circ}C$		-	20		20
t _{rr}	Reverse Recovery Time		-	25		ns
Q _{rr}	Reverse Recovery Charge	I _F = 30A, di _F /dt = -200A/μs V _R = 200V, T _C = 25°C	-	28		nC
I _{RRM}	Maximum Reverse Recovery Current		-	2	-	Amps
t _{rr}	Reverse Recovery Time	I _F = 30A, di _F /dt = -200A/μs V _R = 200V, T _C = 125°C	-	55		ns
Q _{rr}	Reverse Recovery Charge		-	150		nC
I _{RRM}	Maximum Reverse Recovery Current		-	5	-	Amps
t _{rr}	Reverse Recovery Time	I _F = 30A, di _F /dt = -800A/μs V _R = 200V, T _C = 125°C	-	33		ns
Q _{rr}	Reverse Recovery Charge		-	300		nC
I _{RRM}	Maximum Reverse Recovery Current		-	16		Amps

THERMAL AND MECHANICAL CHARACTERISTICS

Symbol	Characteristic / Test Conditions	MIN	ТҮР	МАХ	UNIT
$R_{ extsf{ heta}JC}$	Junction-to-Case Thermal Resistance			.67	°C/W
$R_{_{ extsf{ heta}JA}}$	Junction-to-Ambient Thermal Resistance			40	
W _T Package			0.22		oz
	Package Weight		5.9		g
Torque	Maximum Mounting Torque			10	lb•in
				1.1	N•m

APT Reserves the right to change, without notice, the specifications and information contained herein.

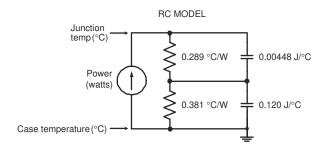


FIGURE 1b, TRANSIENT THERMAL IMPEDANCE MODEL

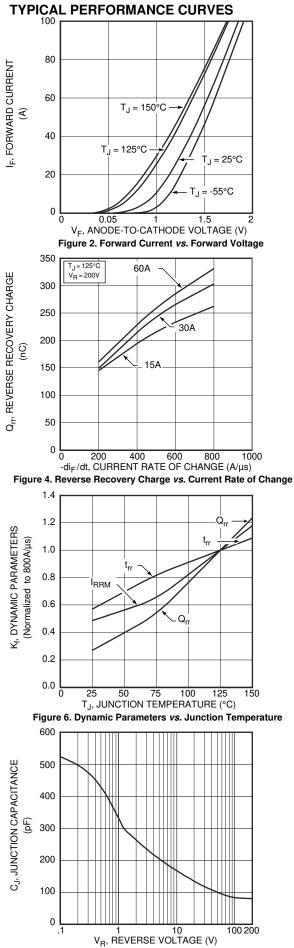
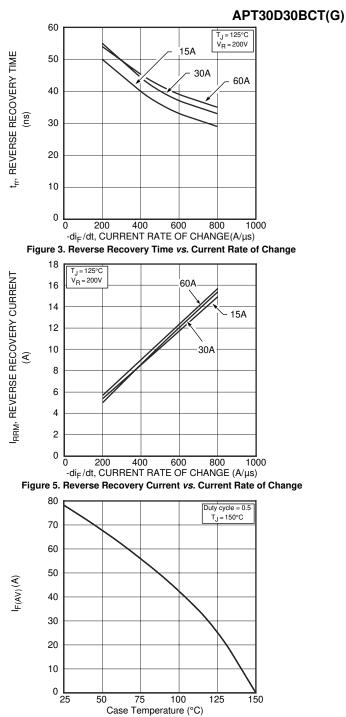
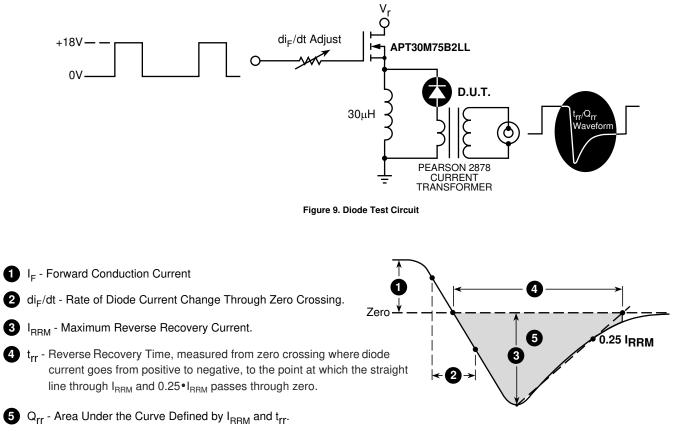


Figure 8. Junction Capacitance vs. Reverse Voltage

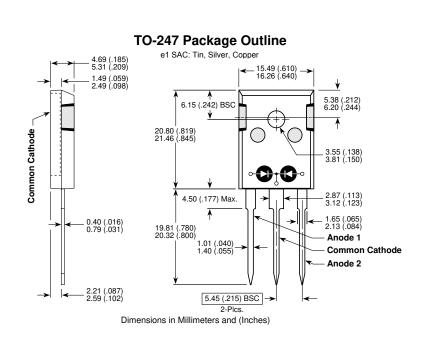


Figure 7. Maximum Average Forward Current vs. CaseTemperature

