

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

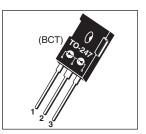
Email & Skype: info@chipsmall.com Web: www.chipsmall.com

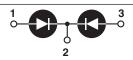
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

*G Denotes RoHS Compliant, Pb Free Terminal Finish.

ULTRAFAST SOFT RECOVERY RECTIFIER DIODE

PRODUCT APPLICATIONS


- Anti-Parallel Diode
 - -Switchmode Power Supply
 - -Inverters
- Free Wheeling Diode
 - -Motor Controllers
 - -Converters
 - -Inverters
- Snubber Diode
- PFC


PRODUCT FEATURES

- Ultrafast Recovery Times
- Soft Recovery Characteristics
- Popular TO-247 Package
- Low Forward Voltage
- Low Leakage Current
- Avalanche Energy Rated

PRODUCT BENEFITS

- Low Losses
- Low Noise Switching
- Cooler Operation
- · Higher Reliability Systems
- Increased System Power Density

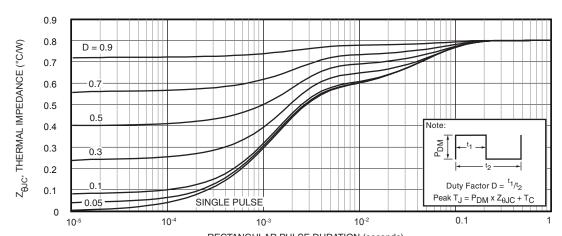
- 1 Anode 1
- 2 Common Cathode Back of Case - Cathode
- 3 Anode 2

MAXIMUM RATINGS

All Ratings Per Leg: $T_C = 25$ °C unless otherwise specified.

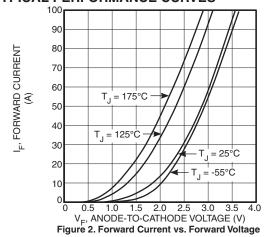
Symbol	Characteristic / Test Conditions	APT30DQ100BCT(G)	UNIT	
V _R	Maximum D.C. Reverse Voltage			
V _{RRM}	Maximum Peak Repetitive Reverse Voltage	1000	Volts	
V _{RWM}	Maximum Working Peak Reverse Voltage			
I _{F(AV)}	Maximum Average Forward Current $(T_C = 102^{\circ}C, Duty Cycle = 0.5)$	30		
I _{F(RMS)}	RMS Forward Current (Square wave, 50% duty)	43	Amps	
I _{FSM}	Non-Repetitive Forward Surge Current $(T_J = 45^{\circ}C, 8.3 \text{ms})$	150		
E _{AVL}	Avalanche Energy (1A, 40mH)	20	mJ	
T _J ,T _{STG}	Operating and StorageTemperature Range	-55 to 175	0.0	
T _L	Lead Temperature for 10 Sec.	300	°C	

STATIC ELECTRICAL CHARACTERISTICS


Symbol	Characteristic / Test Conditions		MIN	TYP	MAX	UNIT
V _F	Forward Voltage	I _F = 30A		2.5	3.0	
		I _F = 60A		3.06		Volts
		I _F = 30A, T _J = 125°C		1.92		
I _{RM}	Maximum Reverse Leakage Current	V _R = 1000V			100	μΑ
		V _R = 1000V, T _J = 125°C			500	
C _T	Junction Capacitance, V _R = 200V			26		pF

Symbol	Characteristic	Test Conditions	MIN	TYP	MAX	UNIT
t _{rr}	Reverse Recovery Time $I_F = 1A$, $di_F/dt =$	Recovery Time $I_F = 1A$, $di_F/dt = -100A/\mu s$, $V_R = 30V$, $T_J = 25$ °C		24		ns
t _{rr}	Reverse Recovery Time	$I_F = 30A$, $di_F/dt = -200A/\mu s$ $V_R = 667V$, $T_C = 25^{\circ}C$	-	295		115
Q _{rr}	Reverse Recovery Charge		-	440		nC
I _{RRM}	Maximum Reverse Recovery Current		-	4	-	Amps
t _{rr}	Reverse Recovery Time	$I_F = 30A$, $di_F/dt = -200A/\mu s$ $V_R = 667V$, $T_C = 125^{\circ}C$	-	330		ns
Q _{rr}	Reverse Recovery Charge		-	1550		nC
I _{RRM}	Maximum Reverse Recovery Current		-	8	-	Amps
t _{rr}	Reverse Recovery Time	$I_F = 30A$, $di_F/dt = -1000A/\mu s$ $V_R = 667V$, $T_C = 125°C$	-	150		ns
Q _{rr}	Reverse Recovery Charge		-	2250		nC
I _{RRM}	Maximum Reverse Recovery Current		-	25		Amps

THERMAL AND MECHANICAL CHARACTERISTICS


Symbol	Characteristic / Test Conditions	MIN	TYP	MAX	UNIT
R _{JC}	Junction-to-Case Thermal Resistance			.80	°C/W
W _T	Package Weight		0.22		oz
			5.9		g
Torque	Maximum Mounting Torque			10	lb•in
				1.1	N•m

Microsemi reserves the right to change, without notice, the specifications and information contained herein.

RECTANGULAR PULSE DURATION (seconds)
FIGURE 1a. MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs. PULSE DURATION

TYPICAL PERFORMANCE CURVES

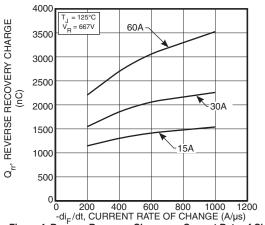
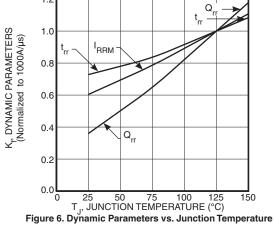
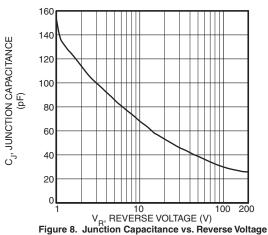




Figure 4. Reverse Recovery Charge vs. Current Rate of Change

APT30DQ100BCT(G)

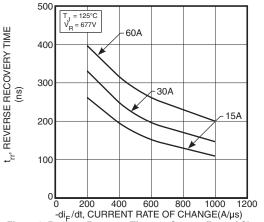


Figure 3. Reverse Recovery Time vs. Current Rate of Change

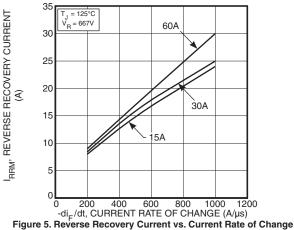


Figure 7. Maximum Average Forward Current vs. CaseTemperature

Figure 9. Diode Test Circuit

- 1 I_F Forward Conduction Current
 2 di_F/dt Rate of Diode Current Change Through Zero Crossing.
 3 I_{RRM} Maximum Reverse Recovery Current.
 4 t_{rr} Reverse Recovery Time, measured from zero crossing where diode current goes from positive to negative, to the point at which the straight line through I_{RRM} and 0.25 •I_{RRM} passes through zero.
- 5 Q_{rr} Area Under the Curve Defined by I_{RRM} and t_{rr}.

Figure 10, Diode Reverse Recovery Waveform and Definitions

Rev B

053-4241