

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

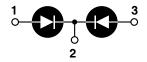
With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

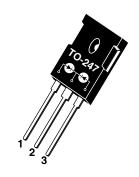


# Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832


Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China










- 1 Anode 1
- 2 Common Cathode Back of Case - Cathode
- 3-Anode 2





Fully compliant with RoHS 2002/95 Directive.

### HIGH VOLTAGE SCHOTTKY DIODE

| PRODUCT APPLICATIONS                                                                   | PRODUCT FEATURES              | PRODUCT BENEFITS                   |
|----------------------------------------------------------------------------------------|-------------------------------|------------------------------------|
| Parallel Diode                                                                         | • Ultrafast Recovery Times    | • Low Losses                       |
| -Switchmode Power Supply  -Inverters                                                   | Soft Recovery Characteristics | • Low Noise Switching              |
| Free Wheeling Diode     -Motor Controllers                                             | Popular TO-247 Package        | Cooler Operation                   |
| -Converters  • Snubber Diode                                                           | • Low Forward Voltage         | Higher Reliability Systems         |
| <ul><li>Uninterruptible Power Supply (UPS)</li><li>48 Volt Output Rectifiers</li></ul> | High Blocking Voltage         | Increased System Power     Density |
| High Speed Rectifiers                                                                  | Low Leakage Current           | Density                            |

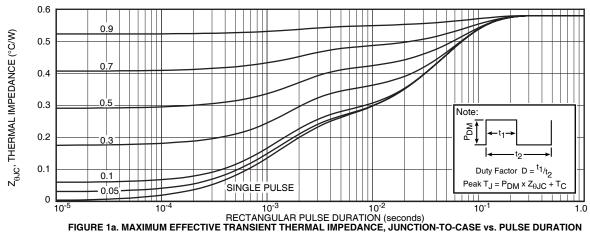
## MAXIMUM RATINGS All Ratings Are Per Leg: $T_C = 25^{\circ}C$ unless otherwise specified.

| Symbol                           | Characteristic / Test Conditions                                           | APT30S20BCTG | UNIT  |  |
|----------------------------------|----------------------------------------------------------------------------|--------------|-------|--|
| V <sub>R</sub>                   | Maximum D.C. Reverse Voltage                                               |              |       |  |
| V <sub>RRM</sub>                 | Maximum Peak Repetitive Reverse Voltage                                    | 200          | Volts |  |
| V <sub>RWM</sub>                 | Maximum Working Peak Reverse Voltage                                       |              |       |  |
| I <sub>F</sub> (AV)              | Maximum Average Forward Current (T <sub>C</sub> = 125°C, Duty Cycle = 0.5) | 45           |       |  |
| I <sub>F</sub> (RMS)             | RMS Forward Current (Square wave, 50% duty)                                | 121          | Amps  |  |
| I <sub>FSM</sub>                 | Non-Repetitive Forward Surge Current (T <sub>J</sub> = 45°C, 8.3ms)        | 320          |       |  |
| T <sub>J</sub> ,T <sub>STG</sub> | Operating and StorageTemperature Range                                     | -55 to 150   | °C    |  |
| T <sub>L</sub>                   | Lead Temperature Case for 10 Sec.                                          | 300          |       |  |
| E <sub>VAL</sub>                 | Avalanche Energy (2A, 15mH)                                                | 30           | mJ    |  |

#### STATIC FLECTRICAL CHARACTERISTICS

| STATIC ELECTRICAL CHARACTERISTICS |                                             |                                              |     |     |     |       |
|-----------------------------------|---------------------------------------------|----------------------------------------------|-----|-----|-----|-------|
| Symbol                            |                                             |                                              | MIN | TYP | MAX | UNIT  |
| V <sub>F</sub>                    |                                             | I <sub>F</sub> = 30A                         |     | .80 | .85 | Volts |
|                                   |                                             | I <sub>F</sub> = 60A                         |     | .91 |     |       |
|                                   |                                             | I <sub>F</sub> = 30A, T <sub>J</sub> = 125°C |     | .67 |     |       |
| I <sub>RM</sub>                   | Maximum Reverse Leakage Current             | V <sub>R</sub> = V <sub>R</sub> Rated        |     |     | 0.5 | mA    |
|                                   |                                             | $V_R = V_R$ Rated, $T_J = 125$ °C            |     |     | 15  |       |
| C <sub>T</sub>                    | Junction Capacitance, V <sub>R</sub> = 200V |                                              |     | 150 |     | pF    |




Pb) Fully complient with RoHS 2002/95 Directive.

| Symbol           | Characteristic                   | Test Conditions                                                                                       | MIN | TYP | MAX | UNIT |
|------------------|----------------------------------|-------------------------------------------------------------------------------------------------------|-----|-----|-----|------|
| t <sub>rr</sub>  | Reverse Recovery Time            | 1 20 A di /dt 200 A ///2                                                                              | -   | 55  |     | ns   |
| Q <sub>rr</sub>  | Reverse Recovery Charge          | $I_F = 30A$ , $di_F/dt = -200A/\mu s$<br>$V_R = 133V$ , $T_C = 25^{\circ}C$                           | -   | 190 |     | nC   |
| I <sub>RRM</sub> | Maximum Reverse Recovery Current |                                                                                                       | -   | 6   | -   | Amps |
| t <sub>rr</sub>  | Reverse Recovery Time            | I <sub>F</sub> = 30A, di <sub>F</sub> /dt = -200A/μs<br>V <sub>R</sub> = 133V, T <sub>C</sub> = 125°C | -   | 100 |     | ns   |
| Q <sub>rr</sub>  | Reverse Recovery Charge          |                                                                                                       | -   | 450 |     | nC   |
| I <sub>RRM</sub> | Maximum Reverse Recovery Current |                                                                                                       | •   | 9   | -   | Amps |
| t <sub>rr</sub>  | Reverse Recovery Time            | $I_F = 30A$ , $di_F/dt = -700A/\mu s$<br>$V_R = 133V$ , $T_C = 125^{\circ}C$                          | 1   | 70  |     | ns   |
| Q <sub>rr</sub>  | Reverse Recovery Charge          |                                                                                                       | -   | 960 |     | nC   |
| I <sub>RRM</sub> | Maximum Reverse Recovery Current |                                                                                                       | -   | 24  |     | Amps |

### THERMAL AND MECHANICAL CHARACTERISTICS

| Symbol         | Characteristic / Test Conditions       | MIN | TYP  | MAX | UNIT  |
|----------------|----------------------------------------|-----|------|-----|-------|
| $R_{	hetaJC}$  | Junction-to-Case Thermal Resistance    |     |      | .58 | °C/W  |
| $R_{\thetaJA}$ | Junction-to-Ambient Thermal Resistance |     |      | 40  |       |
| W <sub>T</sub> | Package Weight                         |     | 0.22 |     | oz    |
|                |                                        |     | 5.9  |     | g     |
| Torque         | Maximum Mounting Torque                |     |      | 10  | lb•in |
|                |                                        |     |      | 1.1 | N•m   |

APT Reserves the right to change, without notice, the specifications and information contained herein.



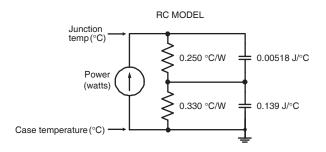
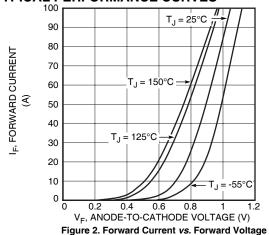




FIGURE 1b, TRANSIENT THERMAL IMPEDANCE MODEL

#### **TYPICAL PERFORMANCE CURVES**



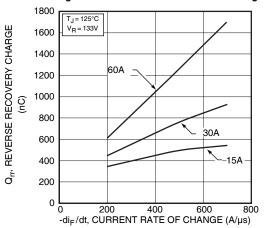



Figure 4. Reverse Recovery Charge vs. Current Rate of Change

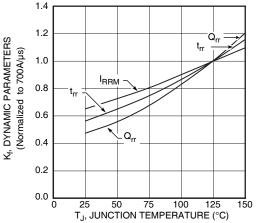



Figure 6. Dynamic Parameters vs. Junction Temperature

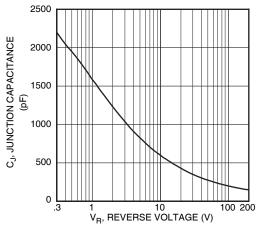



Figure 8. Junction Capacitance vs. Reverse Voltage

### APT30S20BCTG

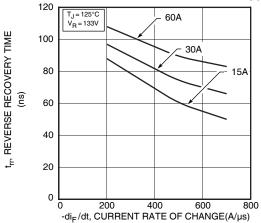



Figure 3. Reverse Recovery Time vs. Current Rate of Change

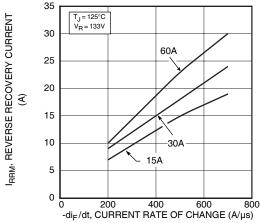



Figure 5. Reverse Recovery Current vs. Current Rate of Change

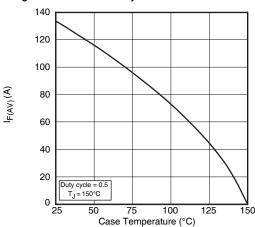



Figure 7. Maximum Average Forward Current vs. CaseTemperature

0.25 I<sub>RRM</sub>

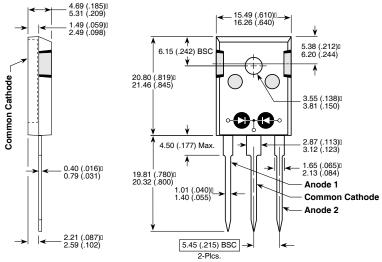

6

Figure 9. Diode Test Circuit

- 1 I<sub>F</sub> Forward Conduction Current
- 2 di<sub>E</sub>/dt Rate of Diode Current Change Through Zero Crossing.
- 3 I<sub>RRM</sub> Maximum Reverse Recovery Current.
- 4 t<sub>rr</sub> Reverse Recovery Time, measured from zero crossing where diode current goes from positive to negative, to the point at which the straight line through I<sub>RRM</sub> and 0.25•I<sub>RRM</sub> passes through zero.
- 5 Q<sub>rr</sub> Area Under the Curve Defined by I<sub>RRM</sub> and t<sub>rr</sub>.

Figure 10, Diode Reverse Recovery Waveform and Definitions

### **TO-247 Package Outline**



Dimensions in Millimeters and (Inches)