: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Super Junction MOSFET

- Ultra Low $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$
- Low Miller Capacitance
- Ultra Low Gate Charge, Q_{g}

- Avalanche Energy Rated
- Extreme ${ }^{\mathbf{d v} / \mathrm{dt}}$ Rated
- Dual die (parallel)
- Popular T-MAX Package

Unless stated otherwise, Microsemi discrete MOSFETs contain a single MOSFET die. This device is made with
two parallel MOSFET die. It is intended for switch-mode operation. It is not suitable for linear mode operation.
MAXIMUM RATINGS

Symbol	Parameter	APT36N90BC3G	UNIT
$\mathrm{V}_{\text {DSS }}$	Drain-Source Voltage	900	Volts
$I_{\text {D }}$	Continuous Drain Current @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	36	Amps
	Continuous Drain Current @ $\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$	23	
$\mathrm{I}_{\text {DM }}$	Pulsed Drain Current ${ }^{1}$	96	
$\mathrm{V}_{\text {GS }}$	Gate-Source Voltage Continuous	± 20	Volts
P_{D}	Total Power Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	390	Watts
$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {STG }}$	Operating and Storage Junction Temperature Range	-55 to 150	${ }^{\circ} \mathrm{C}$
T ${ }_{\text {L }}$	Lead Temperature: 0.063 from Case for 10 Sec.	260	
$\mathrm{dv} / \mathrm{dt}$	Drain-Source Voltage slope ($\left.\mathrm{V}_{\mathrm{DS}}=400 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=36 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C}\right)$	50	V/ns
$\mathrm{I}_{\text {AR }}$	Avalanche Current ${ }^{2}$	8.8	Amps
$\mathrm{E}_{\text {AR }}$	Repetitive Avalanche Energy ${ }^{2} \quad(\mathrm{Id}=8.8 \mathrm{~A}, \mathrm{Vdd}=50 \mathrm{~V})$	2.9	mJ
$\mathrm{E}_{\text {AS }}$	Single Pulse Avalanche Energy ($\mathrm{Id}=8.8 \mathrm{~A}, \mathrm{Vdd}=50 \mathrm{~V}$)	1940	

STATIC ELECTRICAL CHARACTERISTICS

Symbol	Characteristic / Test Conditions	MIN	TYP	MAX	UNIT
$\mathrm{BV}_{(\mathrm{DSS})}$	Drain-Source Breakdown Voltage $\left(\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}\right)$	900			Volts
$\mathrm{R}_{\mathrm{DS}(\mathrm{on})}$	Drain-Source On-State Resistance ${ }^{3}\left(\mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=18 \mathrm{~A}\right)$		0.10	0.12	Ohms
$\mathrm{I}_{\mathrm{DSS}}$	Zero Gate Voltage Drain Current $\left(\mathrm{V}_{\mathrm{DS}}=900 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}\right)$	-	-	100	$\mu \mathrm{~A}$
	Zero Gate Voltage Drain Current $\left(\mathrm{V}_{\mathrm{DS}}=900 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=150^{\circ} \mathrm{C}\right)$	-	50	-	
$\mathrm{I}_{\mathrm{GSS}}$	Gate-Source Leakage Current $\left(\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}\right)$	-	-	100	nA
$\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$	Gate Threshold Voltage $\left(\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}=2.9 \mathrm{~mA}\right)$	2.5	3	3.5	Volts

TAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.

Symbol	Characteristic	Test Conditions	MIN	TYP	MAX	UNIT
$\mathrm{C}_{\text {iss }}$	Input Capacitance	$\begin{gathered} V_{G S}=0 \mathrm{~V} \\ V_{D S}=25 \mathrm{~V} \\ \mathrm{f}=1 \mathrm{MHz} \end{gathered}$		7463		pF
$\mathrm{C}_{\text {oss }}$	Output Capacitance			6827		
$\mathrm{C}_{\text {rss }}$	Reverse Transfer Capacitance			167		
Q_{g}	Total Gate Charge ${ }^{4}$	$\begin{gathered} V_{G S}=10 \mathrm{~V} \\ V_{D D}=450 \mathrm{~V} \\ I_{D}=36 \mathrm{~A} @ 25^{\circ} \mathrm{C} \end{gathered}$		252		nC
Q_{gs}	Gate-Source Charge			38		
Q_{gd}	Gate-Drain ("Miller") Charge			112		
${ }_{\text {d }}$ (on)	Turn-on Delay Time	INDUCTIVE SWITCHING		70		ns
t_{r}	Rise Time	$\begin{gathered} V_{G S}=15 \mathrm{~V} \\ V_{D D}=600 \mathrm{~V} \\ \mathrm{I}_{\mathrm{D}}=36 \mathrm{~A} @ 25^{\circ} \mathrm{C} \\ R_{G}=4.3 \Omega \end{gathered}$		20		
$\mathrm{t}_{\mathrm{d} \text { (off) }}$	Turn-off Delay Time			400		
t_{f}	Fall Time			25		
$\mathrm{E}_{\text {on }}$	Turn-on Switching Energy ${ }^{5}$	INDUCTIVE SWITCHING @ $25^{\circ} \mathrm{C}$$\begin{gathered} V_{D D}=600 \mathrm{~V}, V_{G S}=15 \mathrm{~V} \\ \mathrm{I}_{\mathrm{D}}=36 \mathrm{~A}, \mathrm{R}_{\mathrm{G}}=4.3 \Omega \end{gathered}$		1500		$\mu \mathrm{J}$
$\mathrm{E}_{\text {off }}$	Turn-off Switching Energy			750		
$\mathrm{E}_{\text {on }}$	Turn-on Switching Energy ${ }^{5}$	$\begin{gathered} \text { INDUCTIVE SWITCHING @ } 125^{\circ} \mathrm{C} \\ V_{D D}=600 \mathrm{~V}, \mathrm{~V}_{G S}=15 \mathrm{~V} \\ \mathrm{I}_{\mathrm{D}}=36 \mathrm{~A}, \mathrm{R}_{\mathrm{G}}=4.3 \Omega \end{gathered}$		2130		
$\mathrm{E}_{\text {off }}$	Turn-off Switching Energy			867		

SOURCE-DRAIN DIODE RATINGS AND CHARACTERISTICS

Symbol	Characteristic / Test Conditions		MIN	TYP	MAX	UNIT
I_{S}	Continuous Source Current (Body Diode)			36		Amps
$\mathrm{I}_{\text {SM }}$	Pulsed Source Current ${ }^{1}$ (Body Diode)			96		
$V_{\text {SD }}$	Diode Forward Voltage ${ }^{3}\left(\mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=18 \mathrm{~A}\right)$			0.8	1.2	Volts
${ }^{\text {dv }} /{ }_{\text {dt }}$					10	V/ns
$t_{\text {rr }}$	Reverse Recovery Time$\left(I_{\mathrm{S}}=-36 \mathrm{~A},{ }^{\mathrm{di}} /{ }_{\mathrm{dt}}=100 \mathrm{~A} / \mu \mathrm{s}\right)$	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		930		ns
		$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$		1230		
$Q_{\text {rr }}$	Reverse Recovery Charge$\left(I_{S}=-36 A,{ }^{d i} /{ }_{d t}=100 A / \mu s\right)$	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		35		$\mu \mathrm{C}$
		$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$		44		
$\mathrm{I}_{\text {RRM }}$	Peak Recovery Current$\left(I_{S}=-36 \mathrm{~A}, \mathrm{di}_{\mathrm{dt}}=100 \mathrm{~A} / \mathrm{\mu s}\right)$	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		70		Amps
		$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$		68		

THERMAL CHARACTERISTICS

Symbol	Characteristic	MIN	TYP	MAX	UNIT
$R_{\text {日JC }}$	Junction to Case			0.3	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$R_{\text {ӨJA }}$	Junction to Ambient			31	

| 1 Repetitive Rating: Pulse width limited by maximum junction | |
| :--- | :--- | :--- |
| temperature | 4 See MIL-STD- 750 Method 3471 |
| 2 Repetitive avalanche causes additional power losses that can | 5 Eon includes diode reverse recovery. |
| be calculated as $P_{A V}=E_{A R}{ }^{* f}$. Pulse width tp limited by Tj max. | 6 Maximum $125^{\circ} \mathrm{C}$ diode commutation speed $=$ di/dt $600 \mathrm{~A} / \mu \mathrm{s}$ |
| 3 Pulse Test: Pulse width < $380 \mu \mathrm{~s}$, Duty Cycle < 2% | |

Microsemi reserves the right to change, without notice, the specifications and information contained herein.

Typical Performance Curves

FIGURE 6, Breakdown Voltage vs Temperature

FIGURE 8, Threshold Voltage vs Temperature

APT36N90BC3G

FIGURE 3, Transfer Characteristics

FIGURE 5, Maximum Drain Current vs Case Temperature

$V_{\text {DS }}$, DRAIN-TO-SOURCE VOLTAGE (V)
FIGURE 9, Maximum Safe Operating Area

Typical Performance Curves

FIGURE 10, Capacitance vs Drain-To-Source Voltage

FIGURE 14, Rise and Fall Times vs Current

FIGURE 16, Switching Energy vs Gate Resistance

FIGURE 11, Gate Charges vs Gate-To-Source Voltage

FIGURE 13, Delay Times vs Current

FIGURE 15, Switching Energy vs Current

Typical Performance Curves

Figure 17，Turn－on Switching Waveforms and Definitions

Figure 18，Turn－off Switching Waveforms and Definitions

Figure 19，Inductive Switching Test Circuit

Dimensions in Millimeters and（Inches）

