

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

500V, 38A, 0.10Ω Max, t_{rr} ≤280ns

N-Channel FREDFET

Power MOS 8 $^{\text{Im}}$ is a high speed, high voltage N-channel switch-mode power MOSFET. This 'FREDFET' version has a drain-source (body) diode that has been optimized for high reliability in ZVS phase shifted bridge and other circuits through reduced t_{FT} , soft recovery, and high recovery dv/dt capability. Low gate charge, high gain, and a greatly reduced ratio of $C_{\text{FSS}}/C_{\text{iss}}$ result in excellent noise immunity and low switching loss. The intrinsic gate resistance and capacitance of the poly-silicon gate structure help control di/dt during switching, resulting in low EMI and reliable paralleling, even when switching at very high frequency.

Single die FREDFET

ET G

FEATURES

- · Fast switching with low EMI
- · Low trr for high reliability
- Ultra low C_{rss} for improved noise immunity
- · Low gate charge
- · Avalanche energy rated
- RoHS compliant

TYPICAL APPLICATIONS

- · ZVS phase shifted and other full bridge
- · Half bridge
- · PFC and other boost converter
- Buck converter
- · Single and two switch forward
- Flyback

Absolute Maximum Ratings

Symbol	Parameter	Ratings	Unit
L	Continuous Drain Current @ T _C = 25°C	38	
'D	Continuous Drain Current @ T _C = 100°C	24	А
I _{DM}	Pulsed Drain Current ^①	175	
V _{GS}	Gate-Source Voltage	±30	٧
E _{AS}	Single Pulse Avalanche Energy ©	1200	mJ
I _{AR}	Avalanche Current, Repetitive or Non-Repetitive	28	А

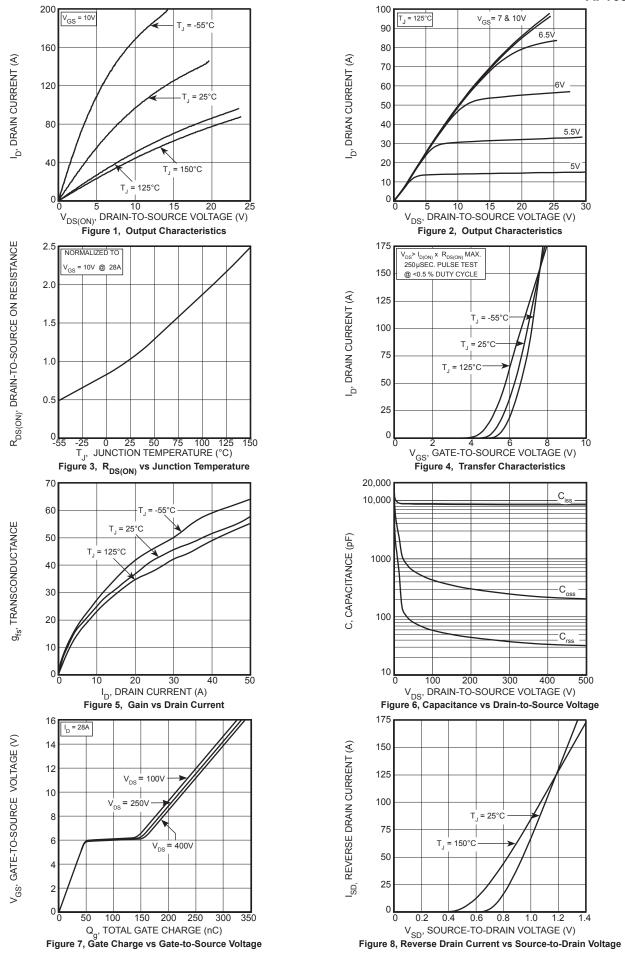
Thermal and Mechanical Characteristics

Symbol	Characteristic		Тур	Max	Unit	
P _D	Total Power Dissipation @ T _C = 25°C			355	W	
$R_{\theta JC}$	Junction to Case Thermal Resistance			0.35	0.35 °C/W	
R _{ecs}	Case to Sink Thermal Resistance, Flat, Greased Surface		0.15			
T_J , T_{STG}	Operating and Storage Junction Temperature Range -5:			150	°C	
V _{Isolation}	RMS Voltage (50-60hHz Sinusoidal Waveform from Terminals to Mounting Base for 1 Min.) 2500				V	
W _T	Package Weight		1.03		OZ	
			29.2		g	
Torque	Terminals and Mounting Screws.		·	10	in∙lbf	
				1.1	N·m	

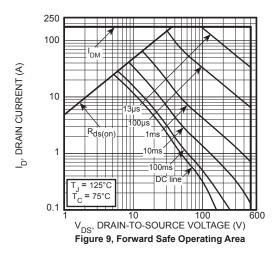
Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
V _{BR(DSS)}	Drain-Source Breakdown Voltage	$V_{GS} = 0V, I_{D} = 250 \mu A$	500			V
$\Delta V_{BR(DSS)} / \Delta T_{J}$	Breakdown Voltage Temperature Coefficient	Reference to 25°C, I _D = 25	0μΑ	0.60		V/°C
R _{DS(on)}	Drain-Source On Resistance ^③	V _{GS} = 10V, I _D = 28A		0.085	0.10	Ω
V _{GS(th)}	Gate-Source Threshold Voltage	\/ =\/ = 2.5m/	2.5	4	5	V
$\Delta V_{GS(th)}/\Delta T_{J}$	Threshold Voltage Temperature Coefficient	$V_{GS} = V_{DS}, I_D = 2.5 \text{mA}$	`	-10		mV/°C
	Zero Gate Voltage Drain Current	$V_{DS} = 500V$ $T_J = 25^{\circ}C$			250	μA
DSS		$V_{GS} = 0V$ $T_J = 125^\circ$	С		1000	μA
I _{GSS}	Gate-Source Leakage Current	V _{GS} = ±30V			±100	nA

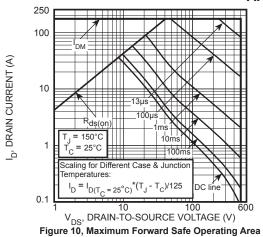
Dvnamic Characteristics

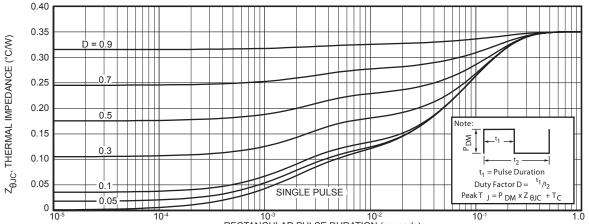
T₁ = 25°C unless otherwise specified


Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
g _{fs}	Forward Transconductance	V _{DS} = 50V, I _D = 28A		42		S
C _{iss}	Input Capacitance	V 0V V 05V		8800		
C _{rss}	Reverse Transfer Capacitance	$V_{GS} = 0V, V_{DS} = 25V$ f = 1MHz		120		
C _{oss}	Output Capacitance	1 111112		945		
$C_{o(cr)} @$	Effective Output Capacitance, Charge Related	V = 0V V = 0V+c 222V		550		pF
C _{o(er)} ⑤	Effective Output Capacitance, Energy Related	V _{GS} = 0V, V _{DS} = 0V to 333V		275		
Q_g	Total Gate Charge)/ 01×40)/ 1 00A		220		
Q_{gs}	Gate-Source Charge	$V_{GS} = 0 \text{ to } 10V, I_{D} = 28A,$ $V_{DS} = 250V$		50		nC
Q_{gd}	Gate-Drain Charge	V _{DS} = 250V		100		
t _{d(on)}	Turn-On Delay Time	Resistive Switching		38		
t _r	Current Rise Time	V _{DD} = 333V, I _D = 28A		45		ns
t _{d(off)}	Turn-Off Delay Time	$R_{G} = 4.7\Omega^{\textcircled{6}}, V_{GG} = 15V$		100		115
t _f	Current Fall Time]		33		

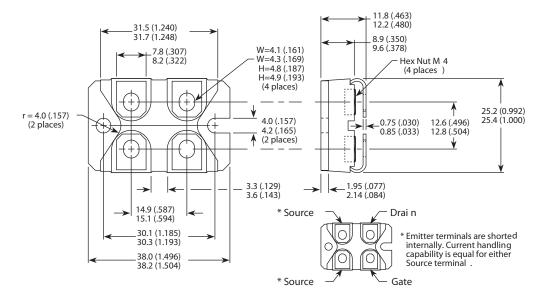
Source-Drain Diode Characteristics


Symbol	Parameter	Test Condit	Min	Тур	Max	Unit	
I _s	Continuous Source Current (Body Diode)	MOSFET symbol showing the integral reverse p-n	OD D			38	А
I _{SM}	Pulsed Source Current (Body Diode) ^①	junction diode (body diode)	s s			175	^
V _{SD}	Diode Forward Voltage	$I_{SD} = 28A, T_{J} = 25^{\circ}C, V_{GS} = 0V$				1.2	V
t _{rr}	Reverse Recovery Time		T _J = 25°C			280	ns
, LL			T _J = 125°C			520	7 115
Q _{rr}	Reverse Recovery Charge	I _{SD} = 28A ^③	T _J = 25°C		1.20		μC
		di _{SD} /dt = 100A/µs	T _J = 125°C		3.07		μΟ
	Reverse Recovery Current	$V_{DD} = 100V$ $T_{J} = 25^{\circ}C$ $T_{J} = 125^{\circ}C$	T _J = 25°C		10.1		Α
'rrm			T _J = 125°C		14.5] ^
dv/dt	Peak Recovery dv/dt	I _{SD} ≤ 28A, di/dt ≤1000A/µs, V _{DD} = 333V, T _J = 125°C				20	V/ns


- ① Repetitive Rating: Pulse width and case temperature limited by maximum junction temperature.
- ② Starting at T $_{\rm J}$ = 25°C, L = 3.06mH, R $_{\rm G}$ = 25 Ω , I $_{\rm AS}$ = 28A.
- ③ Pulse test: Pulse Width < 380μs, duty cycle < 2%.
- \bigcirc C_{o(cr)} is defined as a fixed capacitance with the same stored charge as C_{OSS} with V_{DS} = 67% of V_{(BR)DSS}. (a) C_{o(er)} is defined as a fixed capacitance with the same stored energy as C_{OSS} with V_{DS} = 67% of V_{(BR)DSS}. To calculate C_{o(er)} for any value of V_{DS} less than $V_{(BR)DSS}$, use this equation: $C_{o(er)}$ = -2.04E-7/ V_{DS} ^2 + 4.76E-8/ V_{DS} + 1.36E-10.
- ⑥ R_G is external gate resistance, not including internal gate resistance or gate driver impedance. (MIC4452)


Microsemi reserves the right to change, without notice, the specifications and information contained herein.

050-8130 Rev D 8-20



RECTANGULAR PULSE DURATION (seconds)
Figure 11. Maximum Effective Transient Thermal Impedance Junction-to-Case vs Pulse Duration

SOT-227 (ISOTOP®) Package Outline

