

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

APT40M70JVFR

400V 53A 0.070Ω

POWER MOS V® FREDFET

Power MOS V[®] is a new generation of high voltage N-Channel enhancement mode power MOSFETs. This new technology minimizes the JFET effect, increases packing density and reduces the on-resistance. Power MOS V[®] also achieves faster switching speeds through optimized gate layout.

Faster Switching

Avalanche Energy Rated

Lower Leakage

- FAST RECOVERY BODY DIODE
- Popular SOT-227 Package

MAXIMUM RATINGS

All Ratings: $T_C = 25^{\circ}C$ unless otherwise specified.

Symbol	Parameter	APT40M70JVFR	UNIT	
V _{DSS}	Drain-Source Voltage	400	Volts	
I _D	Continuous Drain Current @ T _C = 25°C	53	Amps	
I _{DM}	Pulsed Drain Current ^①	212	Allips	
V_{GS}	Gate-Source Voltage Continuous	±30	Volts	
V_{GSM}	Gate-Source Voltage Transient	±40	Volto	
P_{D}	Total Power Dissipation @ T _C = 25°C	450	Watts	
. р	Linear Derating Factor	3.6	W/°C	
T_J, T_STG	Operating and Storage Junction Temperature Range	-55 to 150	°C	
T_L	Lead Temperature: 0.063" from Case for 10 Sec.	300]	
I _{AR}	Avalanche Current (Repetitive and Non-Repetitive)	53	Amps	
E _{AR}	Repetitive Avalanche Energy ^①	50	mJ	
E _{AS}	Single Pulse Avalanche Energy ^④	2500] '''	

STATIC ELECTRICAL CHARACTERISTICS

Symbol	Characteristic / Test Conditions	MIN	TYP	MAX	UNIT
BV _{DSS}	Drain-Source Breakdown Voltage ($V_{GS} = 0V, I_D = 250\mu A$)	400			Volts
R _{DS(on)}	Drain-Source On-State Resistance ② (V _{GS} = 10V, 26.5A)			0.07	Ohms
I _{DSS}	Zero Gate Voltage Drain Current ($V_{DS} = 400V, V_{GS} = 0V$)			250	μА
	Zero Gate Voltage Drain Current ($V_{DS} = 320V, V_{GS} = 0V, T_{C} = 125$ °C)			1000	
I _{GSS}	Gate-Source Leakage Current (V _{GS} = ±30V, V _{DS} = 0V)			±100	nA
V _{GS(th)}	Gate Threshold Voltage $(V_{DS} = V_{GS}, I_{D} = 2.5 \text{mA})$	2		4	Volts

CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.

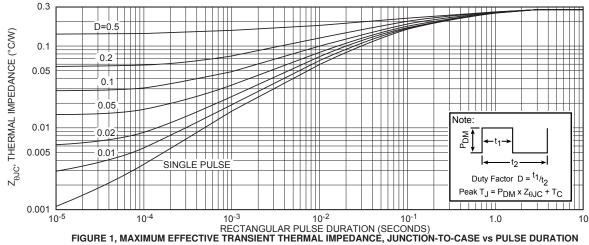
DYNAMIC CHARACTERISTICS

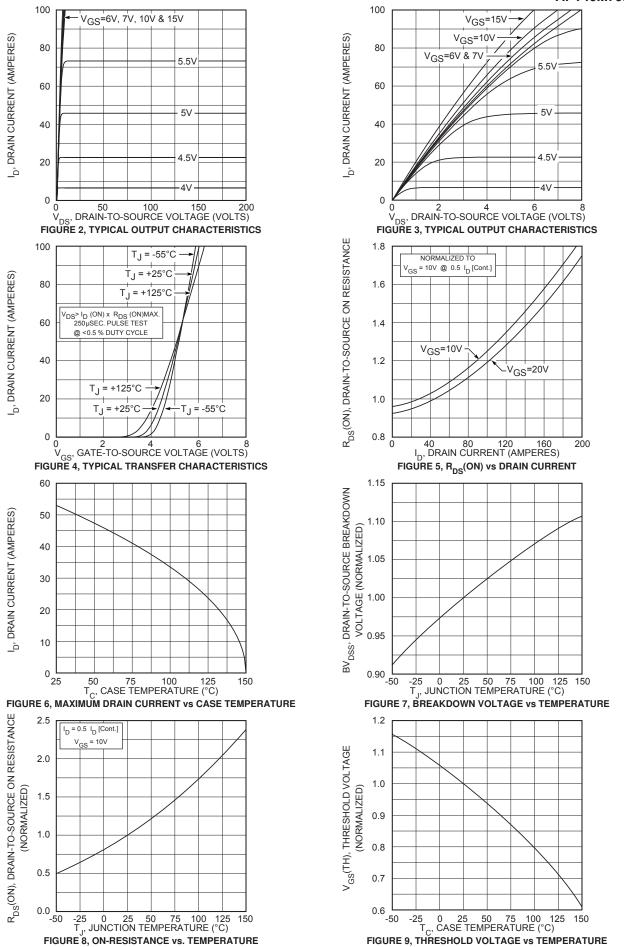
AP	[40]	М7	N. I	V	${\sf FR}$
\sim	TU	IVI /	vu	v	

Symbol	Characteristic	Test Conditions	MIN	TYP	MAX	UNIT
C _{iss}	Input Capacitance	V _{GS} = 0V		7410	8890	
C _{oss}	Output Capacitance	V _{DS} = 25V		1140	1600	pF
C _{rss}	Reverse Transfer Capacitance	f = 1 MHz		450	675	
Q_g	Total Gate Charge ^③	V _{GS} = 10V		330	495	
Q_{gs}	Gate-Source Charge	$V_{DD} = 0.5 V_{DSS}$		40	60	nC
Q_{gd}	Gate-Drain ("Miller") Charge	I _D = I _D [Cont.] @ 25°C		127	190	
t _{d(on)}	Turn-on Delay Time	V _{GS} = 15V		16	32	
t _r	Rise Time	$V_{DD} = 0.5 V_{DSS}$		16	32	ns
t _{d(off)}	Turn-off Delay Time	I _D = I _D [Cont.] @ 25°C		54	80	113
t _f	Fall Time	$R_G = 0.6\Omega$		5	10	

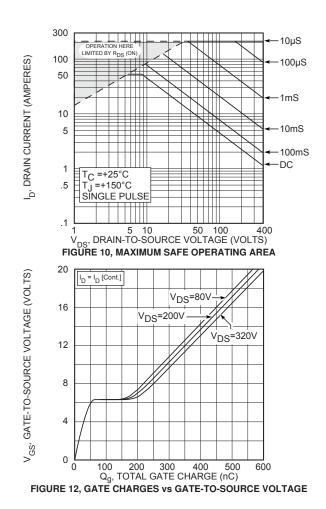
SOURCE-DRAIN DIODE RATINGS AND CHARACTERISTICS

Symbol	Characteristic / Test Conditions		MIN	TYP	MAX	UNIT
I _S	Continuous Source Current (Body Diode)				53	A 222.2
I _{SM}	Pulsed Source Current (1) (Body Diode)				212	Amps
V _{SD}	Diode Forward Voltage ② (V _{GS} = 0V, I _S = -I _D [Cont.])				1.3	Volts
dv/ _{dt}	Peak Diode Recovery dv/dt (5)				15	V/ns
	Reverse Recovery Time	T _j = 25°C			250	
t _{rr}	$(I_S = -I_D [Cont.], \frac{di}{dt} = 100A/\mu s)$	T _j = 125°C			500	ns
	Reverse Recovery Charge	T _j = 25°C		1.6		
Q _{rr}	$(I_S = -I_D [Cont.], di/dt = 100A/\mu s)$	T _j = 125°C		5.5		μC
I _{RRM}	Peak Recovery Current	T _j = 25°C		15		A
	$(I_S = -I_D [Cont.], di/dt = 100A/\mu s)$	T _j = 125°C		27		Amps


THERMAL/PACKAGE CHARACTERISTICS


Symbol	Characteristic	MIN	TYP	MAX	UNIT	
$R_{ heta JC}$	Junction to Case			0.28	°C/W	
$R_{\theta JA}$	Junction to Ambient			40	C/VV	
V _{Isolation}	RMS Voltage (50-60 Hz Sinusoidal Waveform From Terminals to Mounting Base for 1 Min.)	2500			Volts	
Torque	Maximum Torque for Device Mounting Screws and Electrical Terminations.			10	lb•in	

- 1 Repetitive Rating: Pulse width limited by maximum junction temperature
- (4) Starting T $_{\rm j}$ = +25°C, L = 1.78mH, R $_{\rm G}$ = 25 Ω , Peak I $_{\rm L}$ = 53A
- 2 Pulse Test: Pulse width < 380 µs, Duty Cycle < 2%
- $\textcircled{5}\ ^{\text{dv}}\!/_{\text{dt}}$ numbers reflect the limitations of the test circuit rather than the device itself. $I_S \le -I_D 53A$ di/_{dt} $\le 700A/\mu s$ $V_R \le 100V$ $T_J \le 150$ °C


3 See MIL-STD-750 Method 3471

APT Reserves the right to change, without notice, the specifications and information contained herein.

APT40M70JVFR

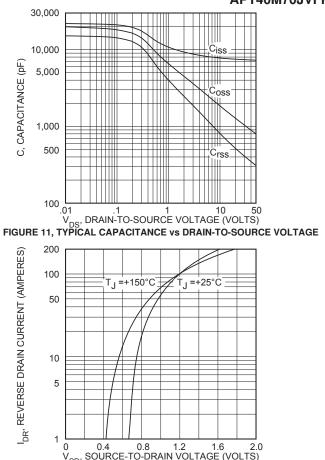
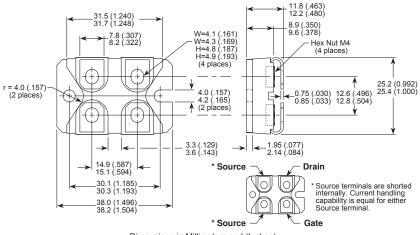



FIGURE 13, TYPICAL SOURCE-DRAIN DIODE FORWARD VOLTAGE

SOT-227 (ISOTOP®) Package Outline

