

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Ultra Fast NPT - IGBT® with Ultra Soft Recovery Diode

The Ultra Fast 650V NPT-IGBT® family of products is the newest generation of IGBTs optimized for outstanding ruggedness and best trade-off between conduction and switching losses.

Features

- Low Saturation Voltage
- Low Tail Current
- RoHS Compliant
- Smooth Reverse Recovery
- · Short Circuit Withstand Rated
- · High Frequency Switching
- Ultra Low Leakage Current
- · Snap-free Switching

Combi (IGBT and Diode)

Unless stated otherwise, Microsemi discrete IGBTs contain a single IGBT die. This device is recommended for applications such as induction heating (IH), motor control, general purpose inverters and uninterruptible power supplies (UPS).

MAXIMUM RATINGS

All Ratings: $T_C = 25^{\circ}C$ unless otherwise specified.

Symbol	Parameter	Ratings	Unit
V _{CES}	Collector Emitter Voltage	650	V
$V_{\rm GE}$	Gate-Emitter Voltage	±30	V
I _{C1}	Continuous Collector Current @ T _c = 25°C	118	
I _{C2}	Continuous Collector Current @ T _C = 110°C	56	Α
I _{CM}	Pulsed Collector Current ①	224	
SCWT	Short Circuit Withstand Time: $V_{CE} = 325V$, $V_{GE} = 15V$, $T_{C} = 125^{\circ}C$	10	μs
P _D	Total Power Dissipation @ T _c = 25°C	543	W
T _J ,T _{STG}	Operating and Storage Junction Temperature Range	-55 to 150	°C
T_L	Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.	300	C

STATIC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Min	Тур	Max	Unit
V _{(BR)CES}	Collector-Emitter Breakdown Voltage $(V_{GE} = 0V, I_{C} = 350\mu A)$	650			
V _{GE(TH)}	Gate Threshold Voltage $(V_{CE} = V_{GE}, I_{C} = 2.5 \text{mA}, T_{j} = 25 ^{\circ}\text{C})$	3.5	5.0	6.5	
V _{CE(ON)}	Collector-Emitter On Voltage (V _{GE} = 15V, I _C = 45A, T _j = 25°C)		1.9	2.4	Volts
	Collector-Emitter On Voltage (V _{GE} = 15V, I _C = 45A, T _j = 125°C)		2.4		
	Collector-Emitter On Voltage (V _{GE} = 15V, I _C = 90A, T _j = 25°C)		2.6		
I _{CES}	Collector Cut-off Current (V _{CE} = 650V, V _{GE} = 0V, T _j = 25°C) ②		20	350	
	Collector Cut-off Current (V _{CE} = 650V, V _{GE} = 0V, T _j = 125°C) ②		200		μA
I _{GES}	Gate-Emitter Leakage Current (V _{GE} = ±20V)			±250	nA

CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
C _{ies}	Input Capacitance	Capacitance		2900		
C _{oes}	Output Capacitance	$V_{GE} = 0V, V_{CE} = 25V$		548		pF
C _{res}	Reverse Transfer Capacitance	f = 1MHz		268		
V_{GEP}	Gate to Emitter Plateau Voltage	Gate Charge		7.5		V
Q [®]	Total Gate Charge	V _{GE} = 15V		150	203	
Q _{ge}	Gate-Emitter Charge	V _{CE} = 325V		18	24	nC
Q_{gc}	Gate- Collector Charge	I _C = 45A		74	100	
t _{d(on)}	Turn-On Delay Time	Inductive Switching (25°C)		15		
t _r	Current Rise Time	V _{cc} = 433V		32		ns
$t_{d(off)}$	Turn-Off Delay Time	V _{GE} = 15V		100		
t _f	Current Fall Time	I _C = 45A		50		
E _{on2} ⑤	Turn-On Switching Energy	$R_{g} = 4.3\Omega^{4}$		1100	1650	1
E _{off}	Turn-Off Switching Energy	T _J = +25°C		540	870	μJ
t _{d(on)}	Turn-On Delay Time	Inductive Switching (125°C)		15		
t _r	Current Rise Time	V _{cc} = 433V		32		20
$t_{d(off)}$	Turn-Off Delay Time	V _{GE} = 15V		123		ns
t _f	Current Fall Time	I _C = 45A		52		
E _{on2} ⁽⁵⁾	Turn-On Switching Energy	$R_{_{\rm G}} = 4.3\Omega^{\oplus}$		1600	2400	1
E _{off}	Turn-Off Switching Energy	T _J = +125°C		800	1160	μJ

THERMAL AND MECHANICAL CHARACTERISTICS

Symbol	Characteristic	Min	Тур	Max	Unit
R _{eJC}	Junction to Case Thermal Resistance (IGBT)			0.23	°C/W
	Junction to Case Thermal Resistance (Diode)			0.80	
R _{eJA}	Junction to Ambient Thermal Resistance			40	
W _T	Package Weight		0.22		oz
			6.2		g

- 1 Repetitive Rating: Pulse width and case temperature limited by maximum junction temperature.
- 2 Pulse test: Pulse Width $< 380\mu s$, duty cycle < 2%.
- 3 See Mil-Std-750 Method 3471.
- 4 R_G is external gate resistance, not including internal gate resistance or gate driver impedance. (MIC4452)
- 5 $E_{\mbox{\scriptsize on2}}$ is the energy loss at turn-on and includes the charge stored in the freewheeling diode.
- $^{\circ}$ 6 $E_{\rm off}$ is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1.

Microsemi reserves the right to change, without notice, the specifications and information contained herein.

TYPICAL PERFORMANCE CURVES

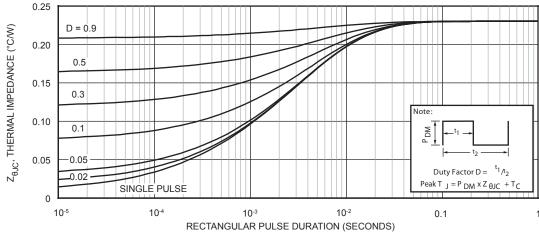
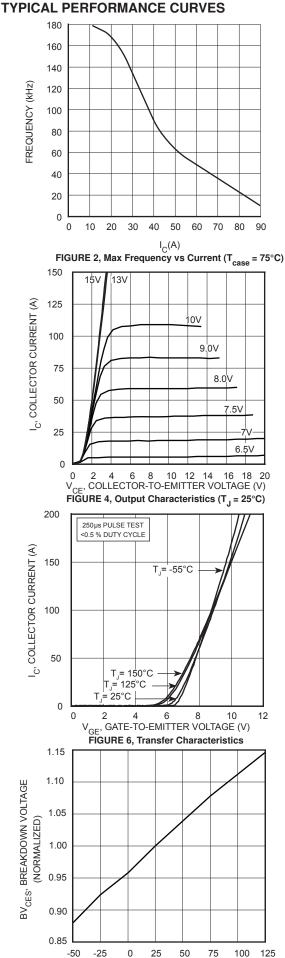
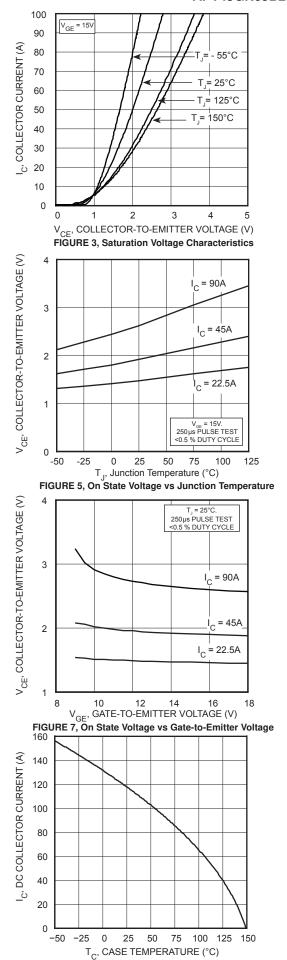
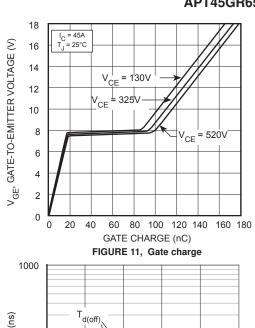
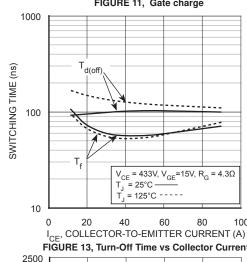
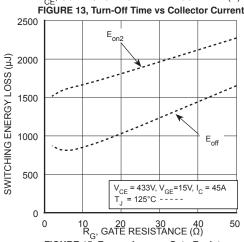



FIGURE 1, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration

T_J, JUNCTION TEMPERATURE

FIGURE 8, Breakdown Voltage vs Junction Temperature


FIGURE 9, DC Collector Current vs Case Temperature

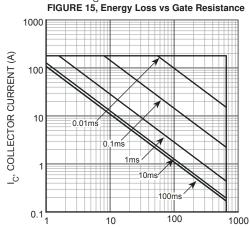

052-6435

FIGURE 16, Swiitching Energy vs Junction Temperature

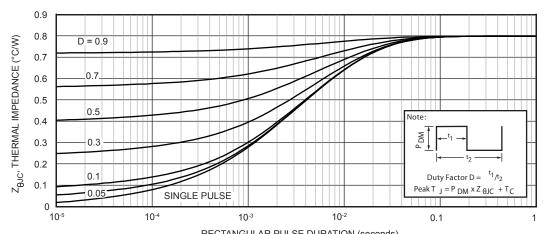
 V_{CE} , COLLECTOR-TO-EMITTER VOLTAGE FIGURE 17, Minimum Switching Safe Operating Area

ULTRA SOFT RECOVERY ANTI-PARALLEL DIODE

MAXIMUM RATINGS

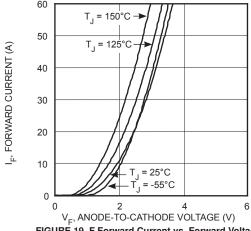
All Ratings: T_C = 25°C unless otherwise specified.

Symbol	Characteristic / Test Conditions	APT45GR65B2DU30	Unit
I _{F(AV)}	Maximum Average Forward Current (T _c = 82°C, Duty Cycle = 0.5)	30	
I _{F(RMS)}	RMS Forward Current (Square wave, 50% duty)	41	Amps
I _{FSM}	Non-Repetitive Forward Surge Current (T _J = 45°C, 8.3ms)	210	


STATIC ELECTRICAL CHARACTERISTICS

Symbol	Characteristic / Test Conditions		Min	Тур	Max	Unit
V _F	Forward Voltage	I _F = 30A		3		
		I _F = 60A		3.9		Volts
		I _F = 60A, T _J = 125°C		3.5		

DYNAMIC CHARACTERISTICS


Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
t _{rr}	Reverse Recovery Time	$I_F = 1.0A$, dif/dt= -100 A/µs, $V_R = 30V$, $T_j = 25$ °C		28		ns
t _{rr}	Reverse Recovery Time	I ₌ = 30 Amps		80		ns
Q _{rr}	Reverse Recovery Charge	dif/dt= -200 A/µs		110		nC
I _{RRM}	Maximum Reverse Recovery Current	V _R = 433 Volts		3		Amps
E _{rr}	Reverse Recovery Energy	T _j = 25°C		2		μJ
t _{rr}	Reverse Recovery	I _E = 30 Amps		343		ns
Q _{rr}	Reverse Recovery Charge	dif/dt= -200 A/µs		965		nC
I _{RRM}	Maximum Reverse Recovery Current	V _R = 433 Volts T _j = 125°C		7		Amps
E _{rr}	Reverse Recovery Energy			88		μJ
t _{rr}	Reverse Recovery	$I_F = 30 \text{ Amps}$ $dif/dt = -1000 \text{ A/}\mu\text{s}$ $V_R = 433 \text{ Volts}$ $T_J = 125^{\circ}\text{C}$		124		ns
Q _{rr}	Reverse Recovery Charge			1355		nC
I _{RRM}	Maximum Reverse Recovery Current			24		Amps
E _{rr}	Reverse Recovery Energy			211		μJ
S	Softness Factor (t _b /t _a)	$I_F = 15A$, dif/dt= -1000 A/µs, $V_R = 800V$, $T_j = 125$ °C		2		

TYPICAL PERFORMANCE CURVES

RECTANGULAR PULSE DURATION (seconds)
FIGURE 18, MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs. PULSE DURATION

TYPICAL PERFORMANCE CURVES

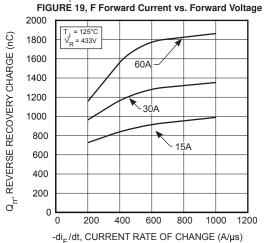
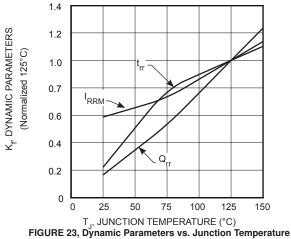



FIGURE 21, Reverse Recovery Charge vs. Current Rate of Change

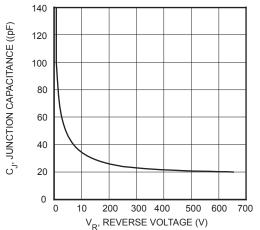


FIGURE 25, Junction Capacitance vs. Reverse Voltage

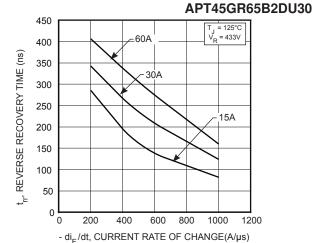


FIGURE 20, Reverse Recovery Time vs. Current Rate of Change

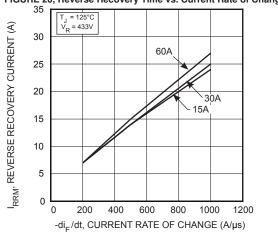


FIGURE 22, Reverse Recovery Current vs. Current Rate of Change

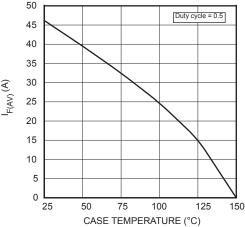


FIGURE 24, Max Average Forward Current vs. Case Temperature

(6)

0.25 I_{RRM}

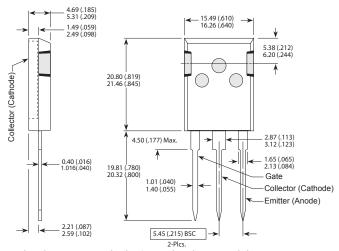

Zero 2

FIGURE 26, Diode Test Circuit

- 1 I_F Forward Conduction Current
- 2 di_F/dt Rate of Diode Current Change Through Zero Crossing
- 3 I_{RRM} Maximum Reverse Recovery Current
- $_{\rm b}$ Time from Maximum Reverse Recovery Current ($I_{\rm RRM}$) to projected zero crossing based on a straight line from $I_{\rm RRM}$ through 25% $I_{\rm RRM}$.
- 6 t_{rr} Reverse Recovery Time measured from zero crossing where diode current goes from positive to negative, to the point at which the straight line through I_{RRM} and 0.25, I_{RRM} passes through zero
- \mathbf{Q}_{rr} Area Under the Curve Defined by \mathbf{I}_{RRM} and \mathbf{t}_{rr}

FIGURE 27, Diode Reverse Recovery Waveform Definition

T-MAX® (B2) Package Outline

These dimensions are equal to the TO-247 without the mounting hole.

Dimensions in Millimeters and (Inches)

Disclaimer:

The information contained in the document (unless it is publicly available on the Web without access restrictions) is PROPRIETARY AND CONFIDENTIAL information of Microsemi and cannot be copied, published, uploaded, posted, transmitted, distributed or disclosed or used without the express duly signed written consent of Microsemi. If the recipient of this document has entered into a disclosure agreement with Microsemi, then the terms of such Agreement will also apply. This document and the information contained herein may not be modified, by any person other than authorized personnel of Microsemi. No license under any patent, copyright, trade secret or other intellectual property right is granted to or conferred upon you by disclosure or delivery of the information, either expressly, by implication, inducement, estoppels or otherwise. Any license under such intellectual property rights must be approved by Microsemi in writing signed by an officer of Microsemi.

Microsemi reserves the right to change the configuration, functionality and performance of its products at anytime without any notice. This product has been subject to limited testing and should not be used in conjunction with life-support or other mission-critical equipment or applications. Microsemi assumes no liability whatsoever, and Microsemi disclaims any express or implied warranty, relating to sale and/or use of Microsemi products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Any performance specifications believed to be reliable but are not verified and customer or user must conduct and complete all performance and other testing of this product as well as any user or customer's final application. User or customer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the customer's and user's responsibility to independently determine suitability of any Microsemi product and to test and verify the same. The information contained herein is provided "AS IS, WHERE IS" and with all faults, and the entire risk associated with such information is entirely with the User. Microsemi specifically disclaims any liability of any kind including for consequential, incidental and punitive damages as well as lost profit. The product is subject to other terms and conditions which can be located on the web at http://www.microsemi.com/terms-a-conditions.