imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

APT5010B2FLL APT5010LFLL 500V 46A 0.100Ω

LFLL

POWER MOS 7[®] FREDFET

Power MOS 7[®] is a new generation of low loss, high voltage, N-Channel enhancement mode power MOSFETS. Both conduction and switching losses are addressed with Power MOS 7[®] by significantly lowering $R_{DS(ON)}$ and Q_g . Power MOS 7[®] combines lower conduction and switching losses along with exceptionally fast switching speeds inherent with APT's patented metal gate structure.

- Lower Input Capacitance
- Lower Miller Capacitance
- Lower Gate Charge, Qg
- Increased Power Dissipation
- Easier To Drive
- Popular T-MAX™ or TO-264 Package
- FAST RECOVERY BODY DIODE

MAXIMUM RATINGS

All Ratings:	$T_{C} = 25^{\circ}$	°C unless	otherwise	specified.
				-

B2FLL

Symbol	Parameter	APT5010B2FLL_LFLL	UNIT
V _{DSS}	Drain-Source Voltage	500	Volts
I _D	Continuous Drain Current @ $T_C = 25^{\circ}C$	46	Amps
I _{DM}	Pulsed Drain Current ^①	184	Апрэ
V _{GS}	Gate-Source Voltage Continuous	±30	Volts
V_{GSM}	Gate-Source Voltage Transient	±40	Volto
P _D	Total Power Dissipation @ $T_{C} = 25^{\circ}C$	520	Watts
·D	Linear Derating Factor	4.0	W/°C
T_,T _{STG}	Operating and Storage Junction Temperature Range	-55 to 150	°C
Τ _L	Lead Temperature: 0.063" from Case for 10 Sec.	300	
I _{AR}	Avalanche Current ⁽¹⁾ (Repetitive and Non-Repetitive)	50	Amps
E _{AR}	Repetitive Avalanche Energy ^①	50	mJ
E _{AS}	Single Pulse Avalanche Energy ④	1600	1110

STATIC ELECTRICAL CHARACTERISTICS

Symbol	Characteristic / Test Conditions	MIN	ТҮР	МАХ	UNIT
BV _{DSS}	Drain-Source Breakdown Voltage ($V_{GS} = 0V$, $I_{D} = 250\mu$ A)	500			Volts
R _{DS(on)}	Drain-Source On-State Resistance $^{\textcircled{0}}$ (V _{GS} = 10V, I _D = 23A)			0.100	Ohms
	Zero Gate Voltage Drain Current ($V_{DS} = 500V, V_{GS} = 0V$)			250	μA
DSS	Zero Gate Voltage Drain Current ($V_{DS} = 400V$, $V_{GS} = 0V$, $T_{C} = 125^{\circ}C$)			1000	μΑ
I _{GSS}	Gate-Source Leakage Current ($V_{GS} = \pm 30V$, $V_{DS} = 0V$)			±100	nA
V _{GS(th)}	Gate Threshold Voltage ($V_{DS} = V_{GS}$, $I_{D} = 2.5$ mA)	3		5	Volts

CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.

Rev D 9-2004

050-7028

APT Website - http://www.advancedpower.com

DYNAMIC CHARACTERISTICS

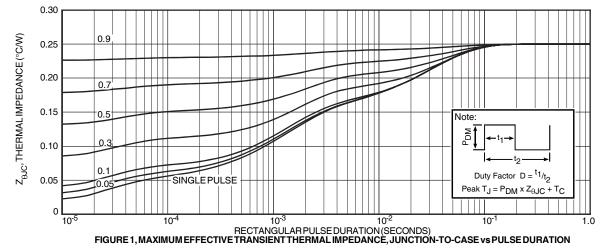
APT5010B2FLL_LFLL

Symbol	Characteristic	Test Conditions	MIN	ТҮР	MAX	UNIT	
C _{iss}	Input Capacitance	V _{GS} = 0V		4360			
C _{oss}	Output Capacitance	$V_{DS} = 25V$		895		pF	
C _{rss}	Reverse Transfer Capacitance	f = 1 MHz		60			
Q _g	Total Gate Charge ^③	V _{GS} = 10V		95			
Q _{gs}	Gate-Source Charge	V _{DD} = 250V		24		nC	
Q_{gd}	Gate-Drain ("Miller") Charge	I _D = 46A @ 25°C		50			
t _{d(on)}	Turn-on Delay Time	RESISTIVE SWITCHING		11			
t _r	Rise Time	V _{GS} = 15V V _{DD} = 250V		15		ns	
t _{d(off)}	Turn-off Delay Time	I _D = 46A@ 25°C		25			
t _f	Fall Time	$R_{G} = 0.6\Omega$		3			
E _{on}	Turn-on Switching Energy $^{\textcircled{6}}$	INDUCTIVE SWITCHING @ 25°C V _{DD} = 333V, V _{GS} = 15V		545			
E _{off}	Turn-off Switching Energy	$I_D = 46A, R_G = 5\Omega$		510		μJ	
E _{on}	Turn-on Switching Energy ⁶	INDUCTIVE SWITCHING @ 125°C $V_{DD} = 333VV_{GS} = 15V$		845		μv	
E _{off}	Turn-off Switching Energy	$I_D = 46A, R_G = 5\Omega$		595			
SOURCE-DRAIN DIODE RATINGS AND CHARACTERISTICS							

Symbol	Characteristic / Test Conditions		MIN	TYP	MAX	UNIT
ا _S	Continuous Source Current (Body Diode)				46	Amps
I _{SM}	Pulsed Source Current $\textcircled{1}$ (Body Diode)				184	Amps
V _{SD}	Diode Forward Voltage ② (V _{GS} = 0V, I _S = -46A)				1.3	Volts
dv/ _{dt}	Peak Diode Recovery ^{dv} / _{dt} ^⑤				15	V/ns
t _{rr}	Reverse Recovery Time (I _S = -46A, ^{di/} _{dt} = 100A/µs)	T _j = 25°C			280	ns
		T _j = 125°C			600	
0	Reverse Recovery Charge	T _j = 25°C		2.28		μC
Q _{rr}	(I _S = -46A, ^{di} / _{dt} = 100A/µs)	T _j = 125°C		6.41		
I _{RRM}	Peak Recovery Current (I _S = -46A, ^{di/} _{dt} = 100A/µs)	T _j = 25°C		15.7		1 mno
		T _j = 125°C		23.6		Amps

THERMAL CHARACTERISTICS

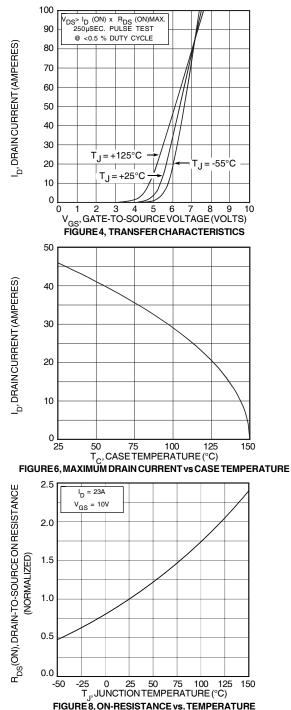
Symbol	Characteristic	MIN	ТҮР	MAX	UNIT
$R_{ ext{ heta}JC}$	Junction to Case			0.25	0000
$R_{ ext{ heta}JA}$	Junction to Ambient			40	°C/W

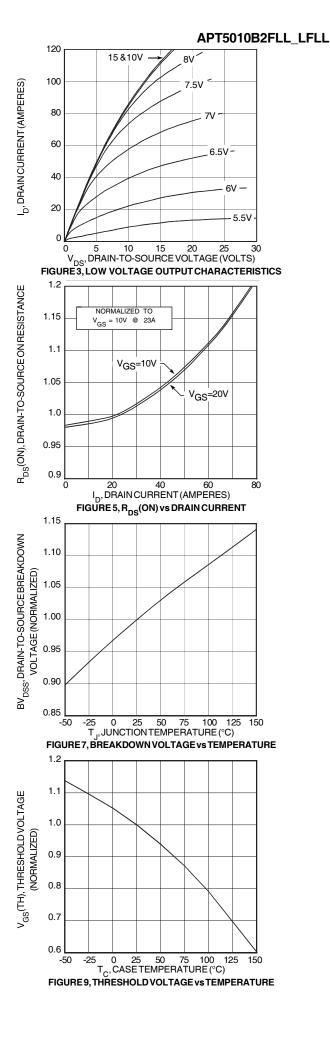

 Repetitive Rating: Pulse width limited by maximum junction temperature (4) Starting T_j = +25°C, L = 1.51mH, R_G = 25 Ω , Peak I_L = 46A

(5) $dv/_{dt}$ numbers reflect the limitations of the test circuit rather than the device itself. $I_{s} \leq -I_{D}46A \frac{di}{dt} \leq 700A/\mu s$ $v_{R} \leq 500V$ $T_{J} \leq 150^{\circ}C$

2 Pulse Test: Pulse width < 380 µs, Duty Cycle < 2%
 3 See MIL-STD-750 Method 3471

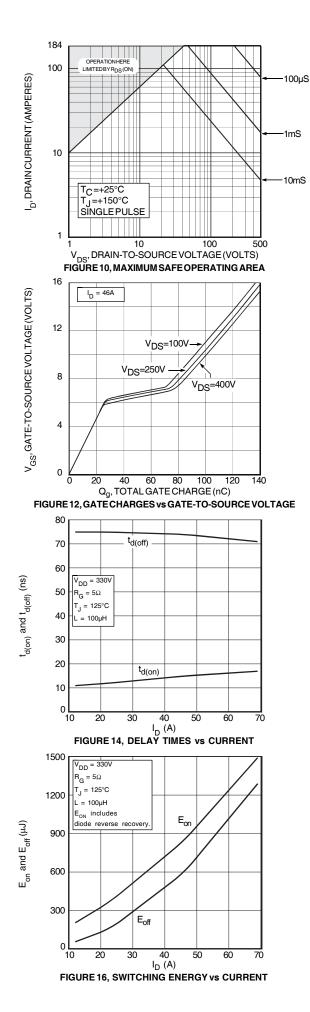
(6) Eon includes diode reverse recovery. See figures 18, 20. ration contained herein.

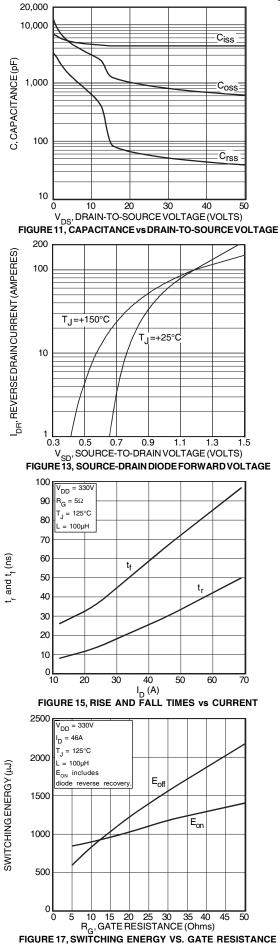

 ${\tt APT} \, {\tt Reserves} \, {\tt the} \, {\tt right} \, {\tt to} \, {\tt change}, \\ {\tt without} \, {\tt notice}, \\ {\tt the} \, {\tt specifications} \, {\tt and} \, {\tt information} \, {\tt contained} \, {\tt herein}.$



Typical Performance Curves

Junction temp. (°C) RC MODEL 0.0131 0.00266F 0.0789 0.00584F 0.0811 0.0796F 0.230 0.460F


FIGURE 2, TRANSIENT THERMAL IMPEDANCE MODEL



050-7028 Rev D 9-2004

APT5010B2FLL LFLL

APT5010B2FLL_LFLL

Figure 18, Turn-on Switching Waveforms and Definitions

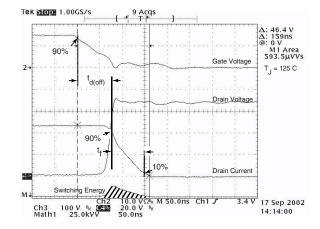


Figure 19, Turn-off Switching Waveforms and Definitions

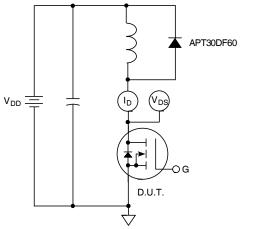
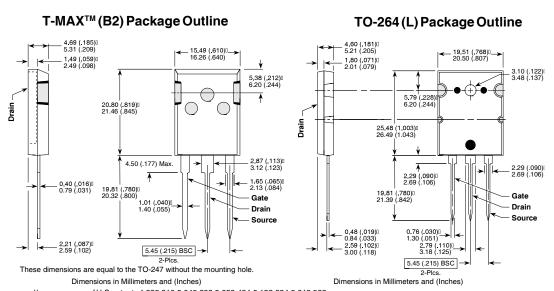



Figure 20, Inductive Switching Test Circuit

APT's products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.