: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

APT50GT120B2R（G） APT50GT120LR（G）

$1200 \mathrm{~V}, 50 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}(\mathrm{ON})}=3.2 \mathrm{~V}$ Typical

Thunderbolt IGBT ${ }^{\circledR}$

The Thunderbolt IGBT ${ }^{\circledR}$ is a new generation of high voltage power IGBTs．Using Non－Punch－Through Technology，the Thunderbolt IGBT ${ }^{\circledR}$ offers superior rugged－ ness and ultrafast switching speed．

Features

－Low Forward Voltage Drop
－Low Tail Current
－RoHS Compliant
－RBSOA and SCSOA Rated
－High Frequency Switching to 50 KHz
－Ultra Low Leakage Current

Unless stated otherwise，Microsemi discrete IGBTs contain a single IGBT die．This device is made with two parallel IGBT die．It is intended for switch－mode operation．It is not suitable for linear mode operation．

Maximum Ratings

Symbol	Parameter	Ratings	Unit
$\mathrm{V}_{\mathrm{CES}}$	Collector－Emitter Voltage	1200	Volts
$\mathrm{V}_{G E}$	Gate－Emitter Voltage	± 30	
$\mathrm{I}_{\mathrm{C} 1}$	Continuous Collector Current $@ \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	94	
$\mathrm{I}_{\mathrm{C} 2}$	Continuous Collector Current＠ $\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$	50	Amps
I_{CM}	Pulsed Collector Current ${ }^{(1)}$	150	
SSOA	Switching Safe Operating Area $@ \mathrm{~T}_{J}=150^{\circ} \mathrm{C}$	$150 \mathrm{~A} @ 1200 \mathrm{~V}$	
P_{D}	Total Power Dissipation	625	Watts
$\mathrm{T}_{J,} \mathrm{~T}_{\text {STG }}$	Operating and Storage Junction Temperature Range	-55 to 150	C
T_{L}	Max．Lead Temp．for Soldering： $0.063^{\prime \prime}$ from Case for 10 Sec．	300	

Symbol	Parameter	Ratings	Unit
$\mathrm{V}_{\mathrm{CES}}$	Collector－Emitter Voltage	1200	Volts
$\mathrm{V}_{G E}$	Gate－Emitter Voltage	± 30	
$\mathrm{I}_{\mathrm{C} 1}$	Continuous Collector Current $@ \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	94	
$\mathrm{I}_{\mathrm{C} 2}$	Continuous Collector Current＠ $\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$	50	Amps
I_{CM}	Pulsed Collector Current ${ }^{(1)}$	150	
SSOA	Switching Safe Operating Area $@ \mathrm{~T}_{J}=150^{\circ} \mathrm{C}$	$150 \mathrm{~A} @ 1200 \mathrm{~V}$	
P_{D}	Total Power Dissipation	625	Watts
$\mathrm{T}_{J,} \mathrm{~T}_{\text {STG }}$	Operating and Storage Junction Temperature Range	-55 to 150	C
T_{L}	Max．Lead Temp．for Soldering： $0.063^{\prime \prime}$ from Case for 10 Sec．	300	

All Ratings： $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise specified．

Static Electrical Characteristics

Symbol	Characteristic／Test Conditions	Min	Typ	Max	Unit
$\mathrm{V}_{\text {（BR）CES }}$	Collector－Emitter Breakdown Voltage（ $\left.\mathrm{V}_{\mathrm{GE}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=3 \mathrm{~mA}\right)$	1200	－	－	Volts
$\mathrm{V}_{\text {GE（TH）}}$	Gate Threshold Voltage（ $\left.\mathrm{V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{GE}}, \mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA}, \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C}\right)$	4.5	5.5	6.5	
$\mathrm{V}_{\text {CE（ON）}}$	Collector Emitter On Voltage（ $\left.\mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=50 \mathrm{~A}, \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C}\right)$	2.7	3.2	3.7	
	Collector Emitter On Voltage（ $\left.\mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=50 \mathrm{~A}, \mathrm{~T}_{\mathrm{j}}=125^{\circ} \mathrm{C}\right)$	－	4.0	－	
$I_{\text {ces }}$	Collector Cut－off Current（ $\left.\mathrm{V}_{\mathrm{CE}}=1200 \mathrm{~V}, \mathrm{~V}_{\mathrm{GE}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C}\right)^{2}{ }^{2}$	－	－	200	$\mu \mathrm{A}$
	Collector Cut－off Current（ $\left.\mathrm{V}_{\mathrm{CE}}=1200 \mathrm{~V}, \mathrm{~V}_{\mathrm{GE}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{j}}=125^{\circ} \mathrm{C}\right)^{(2)}$	－	－	2.0	mA
$\mathrm{I}_{\text {GES }}$	Gate－Emitter Leakage Current（ $\mathrm{V}_{\mathrm{GE}}= \pm 20 \mathrm{~V}$ ）	－	－	300	nA

[^0]Dynamic Characteristics
APT50GT120B2R_LR(G)

Symbol	Characteristic	Test Conditions	Min	Typ	Max	Unit
$\mathrm{C}_{\text {ies }}$	Input Capacitance	$\begin{gathered} V_{G E}=0 V, V_{C E}=25 \mathrm{~V} \\ f=1 \mathrm{MHz} \end{gathered}$	-	3300	-	pF
$\mathrm{C}_{\text {oes }}$	Output Capacitance		-	500	-	
$\mathrm{C}_{\text {res }}$	Reverse Transfer Capacitance		-	220	-	
$V_{\text {GEP }}$	Gate-to-Emitter Plateau Voltage	Gate Charge$\begin{gathered} V_{G E}=15 \mathrm{~V} \\ V_{C E}=600 \mathrm{~V} \\ \mathrm{I}_{\mathrm{C}}=50 \mathrm{~A} \end{gathered}$	-	10.5	-	V
Q_{g}	Total Gate Charge		-	340	-	nC
Q_{ge}	Gate-Emitter Charge		-	40	-	
Q_{gc}	Gate-Collector Charge		-	210	-	
SSOA	Switching Safe Operating Area	$\begin{gathered} \mathrm{T}_{\mathrm{J}}=150^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{G}}=1.0 \Omega^{\odot}, \mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V}, \\ \mathrm{~L}=100 \mu \mathrm{H}, \mathrm{~V}_{\mathrm{CE}}=1200 \mathrm{~V} \end{gathered}$	150			A
$\mathrm{t}_{\mathrm{d}(\mathrm{on})}$	Turn-On Delay Time	Inductive Switching ($25^{\circ} \mathrm{C}$)	-	24	-	ns
t_{r}	Current Rise Time		-	53	-	
$\mathrm{t}_{\text {d(off) }}$	Turn-Off Delay Time	$\begin{aligned} \mathrm{V}_{\mathrm{CC}} & =800 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{GE}} & =15 \mathrm{~V} \\ \mathrm{I}_{\mathrm{C}} & =50 \mathrm{~A} \\ \mathrm{R}_{\mathrm{G}} & =4.7 \Omega \\ \mathrm{~T}_{\mathrm{J}} & =+25^{\circ} \mathrm{C} \end{aligned}$	-	230	-	
t_{f}	Current Fall Time		-	26	-	
$\mathrm{E}_{\text {on1 }}$	Turn-On Switching Energy ${ }^{(4)}$		-	TBD	-	$\mu \mathrm{J}$
$\mathrm{E}_{\text {on2 }}$	Turn-On Switching Energy ${ }^{(5)}$		-	5330	-	
$\mathrm{E}_{\text {off }}$	Turn-Off Switching Energy ${ }^{\left({ }^{(}\right)}$		-	2330	-	
$\mathrm{t}_{\mathrm{d}(\mathrm{O})}$	Turn-On Delay Time	Inductive Switching $\left(125^{\circ} \mathrm{C}\right)$$V_{C C}=800 \mathrm{~V}$	-	24	-	ns
t_{r}	Current Rise Time		-	53	-	
$\mathrm{t}_{\text {d(off) }}$	Turn-Off Delay Time		-	255	-	
t_{f}	Current Fall Time	$\begin{gathered} \mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V} \\ \mathrm{I}_{\mathrm{C}}=50 \mathrm{~A} \\ \mathrm{R}_{\mathrm{G}}=4.7 \Omega \\ \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C} \end{gathered}$	-	48	-	
$\mathrm{E}_{\text {on1 }}$	Turn-On Switching Energy ${ }^{(4)}$		-	TBD	-	$\mu \mathrm{J}$
$\mathrm{E}_{\text {on2 }}$	Turn-On Switching Energy ${ }^{\left({ }^{\text {a }} \text {) }\right.}$		-	5670	-	
$\mathrm{E}_{\text {off }}$	Turn-Off Switching Energy ${ }^{(6)}$		-	2850	-	

Thermal and Mechanical Characteristics

Symbol	Characteristic / Test Conditions	Min	Typ	Max	Unit
$\mathrm{R}_{\text {өлc }}$	Junction to Case	-	-	0.20	${ }^{\circ} \mathrm{C} / \mathrm{W}$
W_{T}	Package Weight	-	-	5.9	gm

(1) Repetitive Rating: Pulse width limited by maximum junction temperature.
(2) For Combi devices, I ces includes both IGBT and FRED leakages
(3) See MIL-STD-750 Method 3471.
(4) $\mathrm{E}_{\text {on1 }}$ is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode.
(5) $\mathrm{E}_{\text {on2 }}$ is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching loss. (See Figures 21, 22.)
(6) $\mathrm{E}_{\text {off }}$ is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
(7) R_{G} is external gate resistance not including gate driver impedance.

Microsemi reserves the right to change, without notice, the specifications and information contained herein.

Typical Performance Curves

FIGURE 3，Transfer Characteristics

FIGURE 5，On State Voltage vs Gate－to－Emitter Voltage

FIGURE 7，Threshold Voltage vs Junction Temperature

APT50GT120B2R＿LR（G）

FIGURE 2，Output Characteristics $\left(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right)$

FIGURE 4，Gate charge

FIGURE 6，On State Voltage vs Junction Temperature

FIGURE 8，DC Collector Current vs Case Temperature

Typical Performance Curves

FIGURE 11, Current Rise Time vs Collector Current

FIGURE 13, Turn-On Energy Loss vs Collector Current

FIGURE 10, Turn-Off Delay Time vs Collector Current

FIGURE 12, Current Fall Time vs Collector Current

FIGURE 14, Turn-Off Energy Loss vs Collector Current

FIGURE 16, Switching Energy Losses vs Junction Temperature

APT50GT120B2R_LR(G)

FIGURE 17, Capacitance vs Collector-To-Emitter Voltage
FIGURE 18, Minimum Switching Safe Operating Area

Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration

FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL

Figure 20, Operating Frequency vs Collector Current

APT50GT120B2R_LR(G)

Figure 21, Inductive Switching Test Circuit

Figure 23, Turn-off Switching Waveforms and Definitions
T-MAX ${ }^{\circledR}$ Package Outline

Dimensions in Millimeters and (Inches)

Figure 22, Turn-on Switching Waveforms and Definitions

TO-264 Package Outline

[^0]: 萝念
 CAUTION：These Devices are Sensitive to Electrostatic Discharge．Proper Handling Procedures Should Be Followed．

