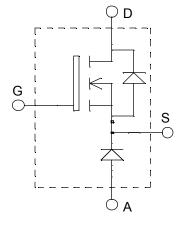
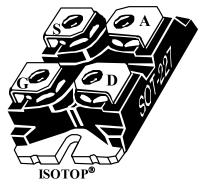
imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!


Contact us


Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

ISOTOP[®] Buck chopper MOSFET Power Module

$V_{DSS} = 500V$ $R_{DSon} = 75m\Omega \text{ max} @ Tj = 25^{\circ}C$ $I_D = 51A @ Tc = 25^{\circ}C$

Application

- AC and DC motor control
- Switched Mode Power Supplies

Features

- Power MOS 7[®] MOSFETs
 - Low R_{DSon}
 - Low input and Miller capacitance
 - Low gate charge
 - Fast intrinsic reverse diode
 - Avalanche energy rated
 - Very rugged
- ISOTOP[®] Package (SOT-227)
- Very low stray inductance
- High level of integration

Benefits

- Outstanding performance at high frequency operation
- Direct mounting to heatsink (isolated package)
- Low junction to case thermal resistance
- Very rugged
- Low profile
- RoHS Compliant

Absolute maximum ratings

Symbol	Parameter			Max ratings	Unit
V _{DSS}	Drain - Source Breakdown Voltage			500	V
ID	Continuous Drain Current		$T_c = 25^{\circ}C$	51	
ID	Continuous Drain Current		$T_c = 80^{\circ}C$	39	А
I _{DM}	Pulsed Drain current	204			
V _{GS}	Gate - Source Voltage			±30	V
R _{DSon}	Drain - Source ON Resistance			75	mΩ
P _D	Maximum Power Dissipation $T_c = 25^{\circ}C$			290	W
I _{AR}	Avalanche current (repetitive and non repetitive)			51	Α
E _{AR}	Repetitive Avalanche Energy			50	mJ
E _{AS}	Single Pulse Avalanche Energy	e Pulse Avalanche Energy 2500			
IF _{AV}	Maximum Average Forward Current	Duty cycle=0.5	$Tc = 80^{\circ}C$	30	А
IF _{RMS}	RMS Forward Current (Square wave, 5	50% duty)		39	Л

CAUTION: These Devices are sensitive to Electrostatic Discharge. Proper Handing Procedures Should Be Followed.

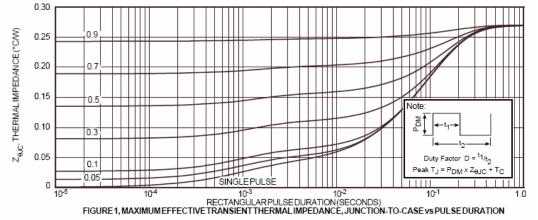
All ratings (a) $T_j = 25^{\circ}C$ unless otherwise specified

Electrical Characteristics

Symbol	Characteristic	Test Conditions		Min	Тур	Max	Unit
I _{DSS}	Zero Gate Voltage Drain Current	$V_{GS} = 0V, V_{DS} = 500V$	$T_j = 25^{\circ}C$			100	μA
	Zero Gate Voltage Drain Current	$V_{GS} = 0V, V_{DS} = 400V$	$T_{j} = 125^{\circ}C$			500	
R _{DS(on)}	Drain – Source on Resistance	$V_{GS} = 10V, I_D = 25.5A$				75	mΩ
V _{GS(th)}	Gate Threshold Voltage	$V_{GS} = V_{DS}, I_D = 1 \text{ mA}$		3		5	V
I _{GSS}	Gate – Source Leakage Current	$V_{GS} = \pm 20 V, V_{DS} = 0V$	/			±100	nA

Dynamic Characteristics

Symbol	Characteristic	Test Conditions	Min	Тур	Max	Unit
C _{iss}	Input Capacitance	$V_{GS} = 0V$		5590		
Coss	Output Capacitance	$V_{\rm DS} = 25 \mathrm{V}$		1180		pF
C _{rss}	Reverse Transfer Capacitance	f = 1 MHz		85		
Qg	Total gate Charge	$V_{GS} = 10V$		123		
Q _{gs}	Gate – Source Charge	$V_{Bus} = 250V$		33		nC
Q_{gd}	Gate – Drain Charge	$I_D = 51A$		65		
T _{d(on)}	Turn-on Delay Time	Resistive Switching		10		
Tr	Rise Time	$V_{GS} = 15V$ $V_{Bus} = 250V$		20		ns
$T_{d(off)}$	Turn-off Delay Time	$I_{\rm D} = 51 \mathrm{A}$		21		115
$T_{\rm f}$	Fall Time	$R_G = 0.6\Omega$		5		
Eon	Turn-on Switching Energy	Inductive switching @ $25^{\circ}C$ $V_{GS} = 15V, V_{Bus} = 330V$		755		μJ
Eoff	Turn-off Switching Energy	$V_{GS} = 15 \text{ v}, \text{ v}_{Bus} = 550 \text{ v}$ $I_D = 51 \text{ A}, \text{ R}_G = 5 \Omega$		726		μυ
Eon	Turn-on Switching Energy	Inductive switching @ 125°C		1241		т
Eoff	Turn-off Switching Energy	$V_{GS} = 15V, V_{Bus} = 330V$ $I_D = 51A, R_G = 5\Omega$		846		μJ

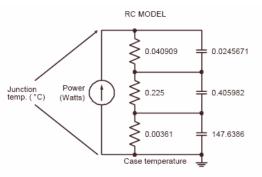
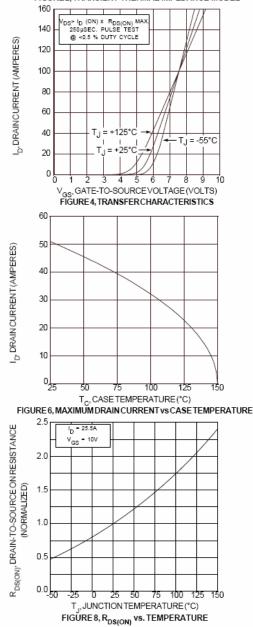
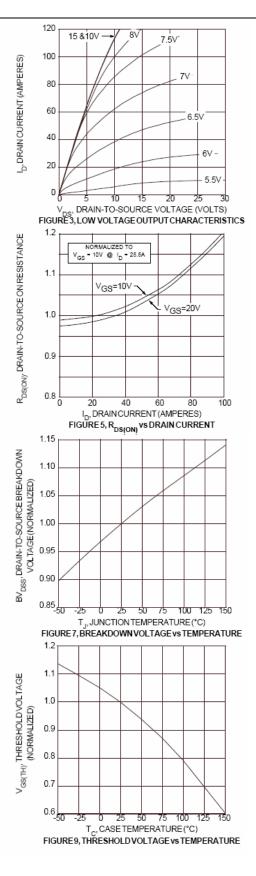

Chopper diode ratings and characteristics

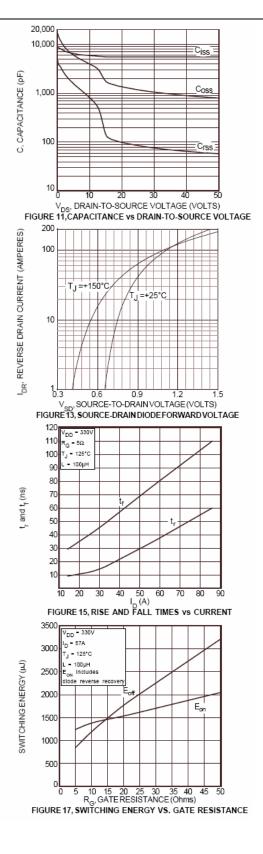
Symbol	Characteristic	Test Conditions		Min	Тур	Max	Unit
		$I_F = 30A$			1.6	1.8	
$V_{\rm F}$	Diode Forward Voltage	$I_F = 60A$			1.9		V
		$I_F = 30A$	$T_{j} = 125^{\circ}C$		1.4		
I _{RM}	Maximum Reverse Leakage Current	$V_{\rm R} = 600 {\rm V}$	$T_j = 25^{\circ}C$			250	μA
	5	$V_{\rm R} = 600 {\rm V}$	$T_{j} = 125^{\circ}C$			500	μΑ
C _T	Junction Capacitance	$V_{R} = 200 V$			44		pF
4	Reverse Recovery Time	$I_F=1A, V_R=30V$ di/dt=100A/µs	$T_j = 25^{\circ}C$		23		ns
t _{rr}	Davana Davana Tima		$T_j = 25^{\circ}C$		85		
	Reverse Recovery Time		$T_{i} = 125^{\circ}C$		160		
т	Maximum Payaraa Pagayary Current	$I_F = 30A$	$T_i = 25^{\circ}C$		4		A
I _{RRM}	Maximum Reverse Recovery Current	$V_{\rm R} = 400 V$ di/dt = 200 A/\mu s	$T_{j} = 125^{\circ}C$		8	8	A
0	Reverse Recovery Charge	$T_{1} = 25$	$T_j = 25^{\circ}C$		130		nC
Q _{rr}	Reverse Recovery Charge		$T_j = 125^{\circ}C$		700		IIC
t _{rr}	Reverse Recovery Time	$I_F = 30A$ $V_R = 400V$ $di/dt = 1000A/\mu s$			70		ns
Q _{rr}	Reverse Recovery Charge		$T_{j} = 125^{\circ}C$		1300		nC
I _{RRM}	Maximum Reverse Recovery Current				30		Α

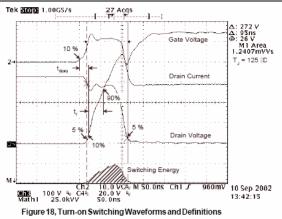
Thermal and package characteristics

Symbol	Characteristic		Min	Тур	Max	Unit
R _{thJC}	Junction to Case Thermal Resistance	MOSFET			0.27	
		Diode			1.21	°C/W
R _{thJA}	Junction to Ambient (IGBT & Diode)				20	
V _{ISOL}	RMS Isolation Voltage, any terminal to case t =1 min, I isol<1mA, 50/60Hz		2500			V
T_J, T_{STG}	Storage Temperature Range		-55		150	°C
T _L	Max Lead Temp for Soldering:0.063" from case for 10 sec				300	C
Torque	Mounting torque (Mounting = 8-32 or 4mm Machine and terminals = 4mm Machine)				1.5	N.m
Wt	Package Weight			29.2		g

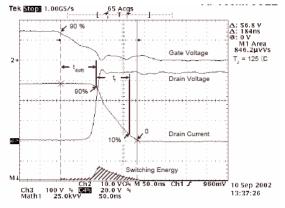
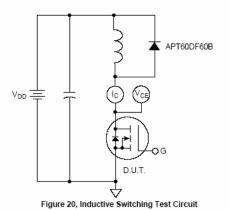
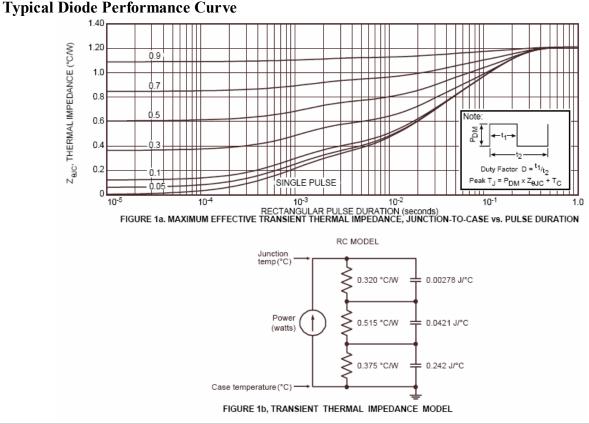
Typical MOSFET Performance Curve

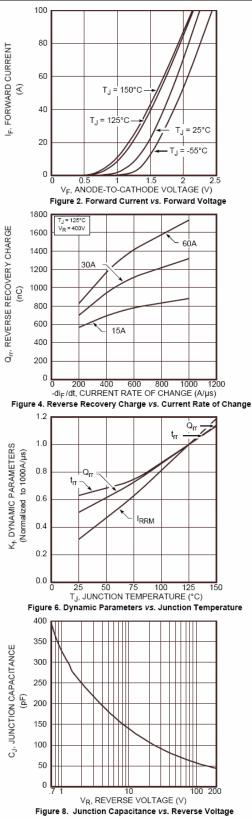




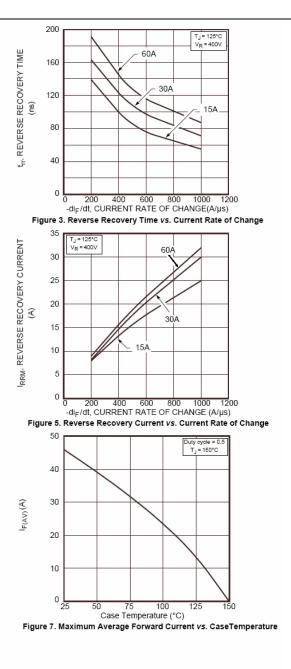

FIGURE 2, TRANSIENT THERMAL IMPEDANCE MODEL



APT50M75JLLU3-Rev 1 June, 2006


Figure 19, Turn-off Switching Waveforms and Definitions



APT50M75JLLU3-Rev 1 June, 2006

APT50M75JLLU3-Rev 1 June, 2006

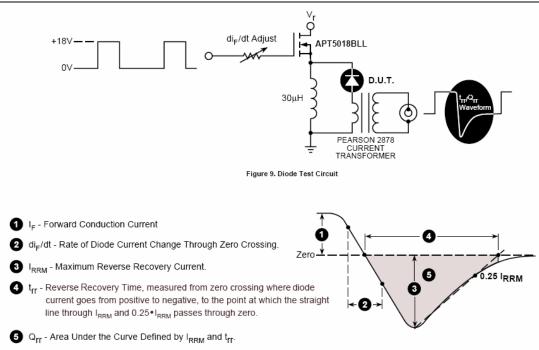
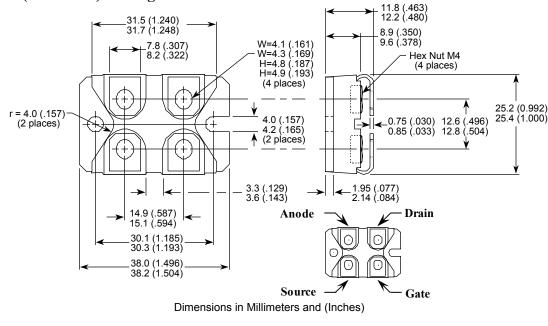



Figure 10, Diode Reverse Recovery Waveform and Definitions

SOT-227 (ISOTOP[®]) Package Outline

ISOTOP® is a registered trademark of ST Microelectronics NV

Microsemi reserves the right to change, without notice, the specifications and information contained herein

Microsemi's products are covered by one or more of U.S patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. U.S and Foreign patents pending. All Rights Reserved.