

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

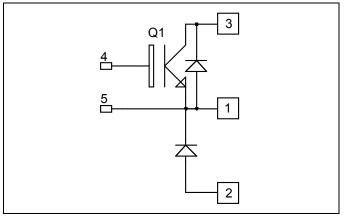
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

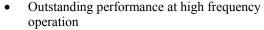
Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

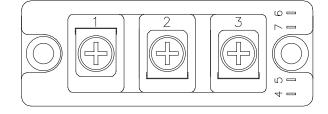


Buck chopper Trench + Field Stop IGBT Power Module

 $V_{CES} = 1200V$ $I_C = 100A @ Tc = 80^{\circ}C$


Application

- AC and DC motor control
- Switched Mode Power Supplies


Features

- Trench + Field Stop IGBT Technology
 - Low voltage drop
 - Low tail current
 - Switching frequency up to 20 kHz
 - Soft recovery parallel diodes
 - Low diode VF
 - Low leakage current
 - RBSOA and SCSOA rated
- Kelvin emitter for easy drive
- High level of integration
- M5 power connectors

Benefits

- Stable temperature behavior
- Very rugged
- Direct mounting to heatsink (isolated package)
- Low junction to case thermal resistance
- Easy paralleling due to positive TC of VCEsat
- **RoHS Compliant**

Absolute maximum ratings

Symbol	Parameter		Max ratings	Unit
V_{CES}	Collector - Emitter Breakdown Voltage		1200	V
I_{C}	Continuous Collector Current	$T_C = 25$ °C	150	
1C	Continuous Conector Current	$T_C = 80$ °C	100	A
I_{CM}	Pulsed Collector Current	$T_C = 25$ °C	200	
V_{GE}	Gate – Emitter Voltage		±20	V
P_{D}	Maximum Power Dissipation	$T_C = 25$ °C	520	W
RBSOA	Reverse Bias Safe Operating Area	$T_j = 125$ °C	200A@1100V	

CAUTION: These Devices are sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed. See application note APT0502 on www.microsemi.com

All ratings @ $T_j = 25^{\circ}C$ unless otherwise specified

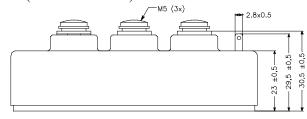
Electrical Characteristics

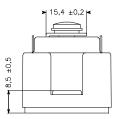
Symbol	Characteristic	Test Conditions		Min	Typ	Max	Unit
I_{CES}	Zero Gate Voltage Collector Current	$V_{GE} = 0V, V_{CE} = 1200V$				3	mA
V _{CE(on)}	Collector Emitter on Voltage	$V_{GE} = 15V$ $I_{C} = 100A$	$T_j = 25$ °C	1.4	1.7	2.1	V
			$T_j = 125$ °C		2.0		V
$V_{GE(th)}$	Gate Threshold Voltage	$V_{GE} = V_{CE}$, $I_C = 4mA$		5.0	5.8	6.5	V
I_{GES}	Gate – Emitter Leakage Current	$V_{GE} = 20V, V_{CE} = 0V$				300	nA

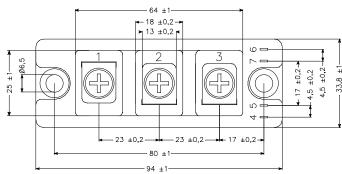
Dynamic Characteristics

Symbol	Characteristic	Test Conditions		Min	Тур	Max	Unit
Cies	Input Capacitance	$V_{GE} = 0V$ $V_{CE} = 25V$			7		nF
C_{oes}	Output Capacitance				0.4		
C_{res}	Reverse Transfer Capacitance	f = 1MHz			0.33		<u> </u>
Q_{G}	Gate charge	$V_{GE}=\pm 15V, I_{C}=100$ $V_{CE}=600V$	00A		950		nC
$T_{d(on)}$	Turn-on Delay Time	Inductive Switchi	ng (25°C)		250		
T_{r}	Rise Time	$V_{GE} = \pm 15V$			90		
$T_{d(off)}$	Turn-off Delay Time	$V_{Bus} = 600V$ $I_{C} = 100A$	$V_{Bus} = 600V$				ns
T_{f}	Fall Time	$R_G = 7.5\Omega$		130			
$T_{d(on)}$	Turn-on Delay Time		Inductive Switching (125°C)		300		ns
T_{r}	Rise Time	$V_{GE} = \pm 15V$ $V_{Bus} = 600V$ $I_{C} = 100A$ $R_{G} = 7.5\Omega$			100		
$T_{d(off)}$	Turn-off Delay Time				650		
T_{f}	Fall Time				180		
Eon	Turn on Energy	$V_{GE} = \pm 15V$ $V_{Bus} = 600V$	$T_j = 125$ °C		7.5		
E_{off}	Turn off Energy	$\begin{vmatrix} I_C = 100A \\ R_G = 7.5\Omega \end{vmatrix} T_j = 1$	$T_j = 125$ °C		17.5		mJ
I_{sc}	Short Circuit data	$V_{GE} \le 15V$; $V_{Bus} = 900V$ $t_p \le 10 \mu s$; $T_i = 125 ^{\circ}C$			400		A

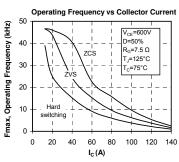
Chopper diode ratings and characteristics

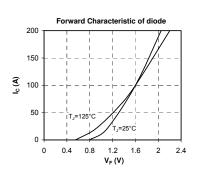

Symbol	Characteristic	Test Conditions		Min	Typ	Max	Unit
V_{RRM}	Maximum Peak Repetitive Reverse Voltage			1200			V
I_{RRM}	Maximum Reverse Leakage Current	V _R =1200V	$T_i = 25$ °C $T_i = 125$ °C			250 500	μА
I_{F}	DC Forward Current		$Tc = 80^{\circ}C$		100		A
$V_{\rm F}$	Diode Forward Voltage	$I_F = 100A$ $V_{GE} = 0V$	$T_i = 25^{\circ}C$		1.6	2.1	V
V F			$T_{i} = 125^{\circ}C$		1.6		
	Reverse Recovery Time	$T_{j} = 25^{\circ}C$ $T_{j} = 125^{\circ}C$ $T_{j} = 125^{\circ}C$ $T_{j} = 25^{\circ}C$ $T_{j} = 25^{\circ}C$ $T_{j} = 125^{\circ}C$ $T_{j} = 25^{\circ}C$ $T_{j} = 125^{\circ}C$ $T_{j} = 125^{\circ}C$	$T_j = 25$ °C		170		ns
t_{rr}			$T_{j} = 125^{\circ}C$		280		
	Reverse Recovery Charge		$T_j = 25$ °C		9		
Q _{rr}			$T_{j} = 125^{\circ}C$		18		μС
E_{rr}	Reverse Recovery Energy		$T_j = 25$ °C		5		mJ
L _{II}				9		1113	

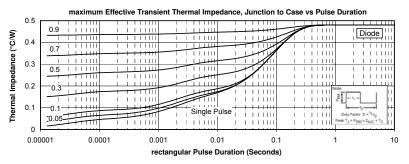


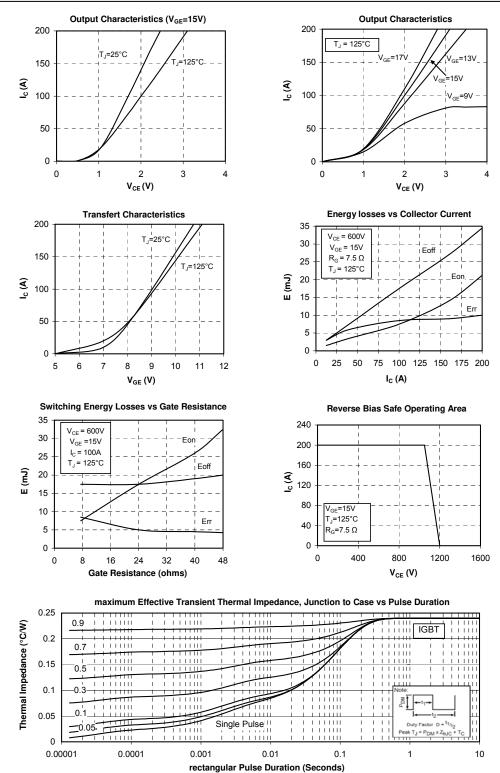

Thermal and package characteristics

Symbol	Characteristic			Min	Typ	Max	Unit
R_{thJC}	Junction to Case Thermal Resistance		IGBT			0.24	°C/W
T _{th} JC	Junetion to Case Thermal Resistance	Diode				0.48	C/ W
V_{ISOL}	RMS Isolation Voltage, any terminal to case t =1 min, I isol<1mA, 50/60Hz			4000			V
$T_{\rm J}$	Operating junction temperature range			-40		150	
T_{STG}	Storage Temperature Range			-40		125	°C
T_{C}	Operating Case Temperature			-40		125	
Torque	Mounting forgue —	For terminals	M5	2		3.5	N.m
		To Heatsink	M6	3		5	111.111
Wt	Package Weight					180	g


D1 Package outline (dimensions in mm)






Typical Performance Curve

Microsemi reserves the right to change, without notice, the specifications and information contained herein

Microsemi's products are covered by one or more of U.S patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 6,939,743 7,352,045 5,283,201 5,801,417 5,648,283 7,196,634 6,664,594 7,157,886 6,939,743 7,342,262 and foreign patents. U.S and Foreign patents pending. All Rights Reserved.