

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

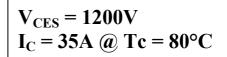
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

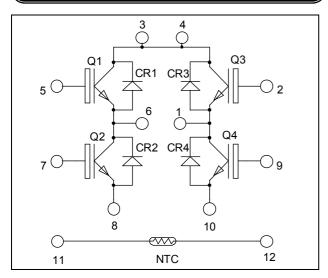
Contact us

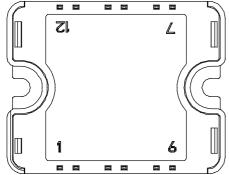
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China







Full – Bridge Fast Trench + Field Stop IGBT® Power Module

Pins 3/4 must be shorted together

Application

- Welding converters
- Switched Mode Power Supplies
- Uninterruptible Power Supplies
- Motor control

Features

- Fast Trench + Field Stop IGBT® Technology
 - Low voltage drop
 - Low tail current
 - Switching frequency up to 20 kHz
 - Soft recovery parallel diodes
 - Low diode VF
 - Low leakage current
 - RBSOA and SCSOA rated
- Very low stray inductance
 - Symmetrical design
- Internal thermistor for temperature monitoring
- High level of integration

Benefits

- Outstanding performance at high frequency operation
- Direct mounting to heatsink (isolated package)
- Low junction to case thermal resistance
- Solderable terminals both for power and signal for easy PCB mounting
- Low profile
- Each leg can be easily paralleled to achieve a phase leg of twice the current capability
- RoHS Compliant

Absolute maximum ratings

Symbol	Parameter		Max ratings	Unit
V_{CES}	Collector - Emitter Breakdown Voltage		1200	V
I_{C}	Continuous Collector Current	$T_C = 25^{\circ}C$	55	
1C	Continuous Conector Current	$T_C = 80$ °C	35	A
I_{CM}	Pulsed Collector Current	$T_C = 25^{\circ}C$	70	
V_{GE}	Gate – Emitter Voltage		±20	V
P_{D}	Maximum Power Dissipation	$T_C = 25^{\circ}C$	208	W
RBSOA	Reverse Bias Safe Operating Area	$T_j = 125$ °C	70A@1150V	

CAUTION: These Devices are sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed. See application note APT0502 on www.microsemi.com

All ratings @ $T_j = 25$ °C unless otherwise specified

Electrical Characteristics

Symbol	Characteristic	Test Conditions	Min	Typ	Max	Unit	
I_{CES}	Zero Gate Voltage Collector Current	$V_{GE} = 0V$	$T_j = 25^{\circ}C$			250	μA
		$V_{CE} = 1200V$	$T_j = 125$ °C			500	μΛ
V _{CE(sat)}	Collector Emitter saturation Voltage	$V_{GE} = 15V$	$T_j = 25^{\circ}C$		1.7	2.1	V
		$I_C = 35A$	$T_j = 125$ °C		2.0		v
$V_{GE(th)}$	Gate Threshold Voltage	$V_{GE} = V_{CE}$, $I_C = 1.5 \text{mA}$		5.0	5.8	6.5	V
I_{GES}	Gate – Emitter Leakage Current	$V_{GE} = 20V, V_{CE} = 0V$				400	nA

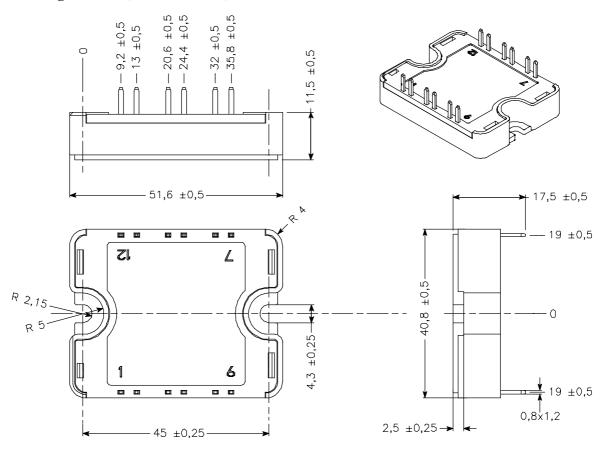
Dynamic Characteristics

Symbol	Characteristic	Test Conditions	Min	Тур	Max	Unit	
Cies	Input Capacitance	$V_{GE} = 0V, V_{CE} = 25V$			2.5		nF
C_{res}	Reverse Transfer Capacitance	f = 1MHz			0.15		III
$T_{d(on)}$	Turn-on Delay Time	Inductive Switch		90			
T_{r}	Rise Time	$V_{GE} = \pm 15V$			30		ns
$T_{d(off)}$	Turn-off Delay Time	$V_{\text{Bus}} = 600V$ $I_{\text{C}} = 35A$			420		
T_{f}	Fall Time	$R_G = 27\Omega$		70			
$T_{d(on)}$	Turn-on Delay Time	Inductive Switching (125°C) $V_{GE} = \pm 15V$ $V_{Bus} = 600V$ $I_{C} = 35A$			90		ns
T_{r}	Rise Time				50		
$T_{d(off)}$	Turn-off Delay Time				520	0	
$T_{\rm f}$	Fall Time	$R_G = 27\Omega$			90		
Eon	Turn-on Switching Energy	$V_{GE} = \pm 15V$ $V_{Bus} = 600V$	$T_j = 125$ °C		3.5		Т
E_{off}	Turn-off Switching Energy	$I_C = 35A$ $R_G = 27\Omega$	$T_j = 125$ °C		4.1		mJ

Reverse diode ratings and characteristics

Symbol	Characteristic	Test Conditions	Test Conditions			Max	Unit
V_{RRM}	Maximum Peak Repetitive Reverse Voltage			1200			V
I_{RM}	Maximum Davarga Laglaga Current	Reverse Leakage Current $= 1.000$ V $=$	$T_j = 25^{\circ}C$			250	^
1 _{RM}	Waximum Reverse Leakage Current		$T_{j} = 125^{\circ}C$			500	μA
I_{F}	DC Forward Current		$Tc = 80^{\circ}C$		35		A
V_{F}	Diode Forward Voltage	$I_F = 35A$	$T_i = 25^{\circ}C$		1.6	2.1	V
▼ F	Blode I of ward Voltage		$T_{i} = 125^{\circ}C$		1.6		•
t _{rr}	Reverse Recovery Time		$T_j = 25^{\circ}C$		170		ns
c rr	Reverse Recovery Time		$T_i = 125^{\circ}C$	$T_{j} = 125^{\circ}C$		280	
0	Reverse Recovery Charge	$ \begin{bmatrix} I_F = 35A \\ V_R = 600V \\ di/dt = 1500A/\mu s \end{bmatrix} $	$T_j = 25^{\circ}C$		3.5		μС
Q_{rr}	Reverse Recovery Charge		$T_{j} = 125^{\circ}C$		7		μС
Er	Davarga Dagayary Engray	·	$T_j = 25$ °C		1.4		mJ
121	Reverse Recovery Energy		$T_j = 125$ °C		2.7		1113

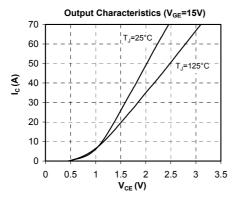
Thermal and package characteristics

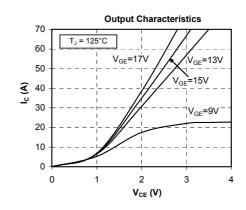

Symbol	Characteristic			Min	Тур	Max	Unit	
R_{thJC}	lunction to Case Thermal Resistance		IGBT			0.60	°C/W	
IX _{th} JC			Diode			0.95	C/ W	
V_{ISOL}	RMS Isolation Voltage, any terminal to case t = 1 min, I isol<1mA, 50/60Hz				2500			V
T_{J}	Operating junction temperature range			-40		150		
T_{STG}	Storage Temperature Range				-40		125	°C
$T_{\rm C}$	Operating Case Temperature						100	
Torque	Mounting torque	To heatsin	k	M4	2.5	•	4.7	N.m
Wt	Package Weight						80	g

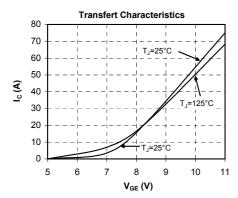
Temperature sensor NTC (see application note APT0406 on www.microsemi.com for more information).

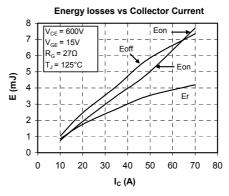
Symbol	Characteristic	Min	Тур	Max	Unit
R ₂₅	Resistance @ 25°C		50		kΩ
B _{25/85}	$T_{25} = 298.15 \text{ K}$		3952		K

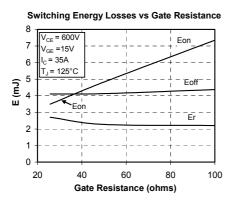
$$R_{T} = \frac{R_{25}}{\exp \left[B_{25/85} \left(\frac{1}{T_{25}} - \frac{1}{T} \right) \right]} \quad \text{T: Thermistor temperature } \\ R_{T}: \text{ Thermistor value at T}$$

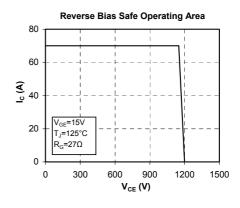

SP1 Package outline (dimensions in mm)

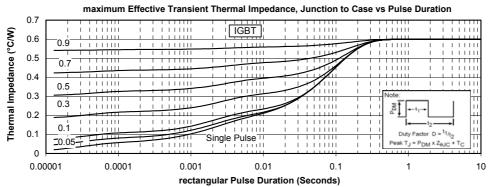


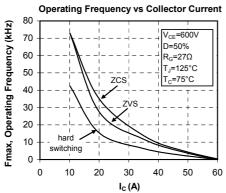

See application note 1904 - Mounting Instructions for SP1 Power Modules on www.microsemi.com

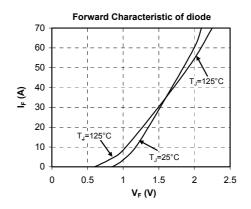


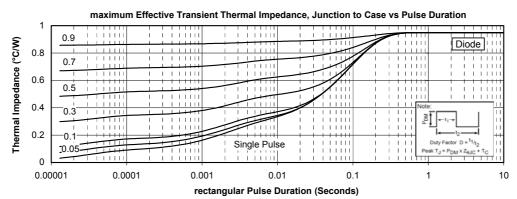

Typical Performance Curve











Microsemi reserves the right to change, without notice, the specifications and information contained herein

Microsemi's products are covered by one or more of U.S patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. U.S and Foreign patents pending. All Rights Reserved.