: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

APTM50AM25FTG
POWER PRODUCTS GROUP

Phase leg MOSFET Power Module

$$
\begin{aligned}
& \mathbf{V}_{\text {DSS }}=500 \mathrm{~V} \\
& \mathbf{R}_{\text {DSon }}=25 \mathrm{~m} \Omega \max @ \mathbf{T j}=\mathbf{2 5}^{\circ} \mathrm{C} \\
& \mathbf{I}_{\mathrm{D}}=\mathbf{1 4 9 \mathrm { A } @ \mathrm { Tc } = 2 5 ^ { \circ } \mathrm { C }}
\end{aligned}
$$

Absolute maximum ratings

Symbol	Parameter		Max ratings	Unit
$\mathrm{V}_{\text {DSS }}$	Drain - Source Breakdown Voltage		500	V
I_{D}	Continuous Drain Current	$\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}$	149	A
		$\mathrm{T}_{\mathrm{c}}=80^{\circ} \mathrm{C}$	111	
I_{DM}	Pulsed Drain current		450	
V_{GS}	Gate - Source Voltage		$\pm 15 *$	V
$\mathrm{R}_{\text {DSon }}$	Drain - Source ON Resistance		25	$\mathrm{m} \Omega$
P_{D}	Maximum Power Dissipation	$\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}$	1250	W
$\mathrm{I}_{\text {AR }}$	Avalanche current (repetitive and non repetitive)		149	A
$\mathrm{E}_{\text {AR }}$	Repetitive Avalanche Energy		30	mJ
$\mathrm{E}_{\text {AS }}$	Single Pulse Avalanche Energy		1300	

* Limited by internal zener protection.

TA CAUTION: These Devices are sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed. See application note APT0502 on www.microsemi.com

All ratings @ $\mathbf{T}_{\mathbf{j}}=\mathbf{2 5}^{\circ} \mathbf{C}$ unless otherwise specified
Electrical Characteristics

Symbol	Characteristic	Test Conditions		Min	Typ	Max	Unit
$\mathrm{I}_{\text {DSS }}$	Zero Gate Voltage Drain Current	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=500 \mathrm{~V}$	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$			1000	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=400 \mathrm{~V}$	$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$			2500	
$\mathrm{R}_{\mathrm{DS} \text { (on) }}$	Drain - Source on Resistance	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=74.5 \mathrm{~A}$				25	$\mathrm{m} \Omega$
$\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$	Gate Threshold Voltage	$\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{DS}}, \mathrm{I}_{\mathrm{D}}=8 \mathrm{~mA}$		2		4	V
$\mathrm{I}_{\text {GSS }}$	Gate - Source Leakage Current	$\mathrm{V}_{\mathrm{GS}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$				± 250	nA
R	Gate Source input impedance				10		$\mathrm{k} \Omega$

Dynamic Characteristics

Symbol	Characteristic	Test Conditions	Min	Typ	Max	Unit
$\mathrm{C}_{\text {iss }}$	Input Capacitance	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DS}}=25 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$		29.6		nF
$\mathrm{C}_{\text {oss }}$	Output Capacitance			4.1		
$\mathrm{C}_{\text {rss }}$	Reverse Transfer Capacitance			1.6		
Q_{g}	Total gate Charge	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{Bus}}=250 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{D}}=149 \mathrm{~A} \end{aligned}$		1200		nC
Q_{gs}	Gate - Source Charge			200		
Q_{gd}	Gate - Drain Charge			560		
$\mathrm{T}_{\mathrm{d}(\mathrm{on})}$	Turn-on Delay Time	Resistive Switching$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=15 \mathrm{~V} \\ & \mathrm{~V}_{\text {Bus }}=250 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{D}}=149 \mathrm{~A} \\ & \mathrm{R}_{\mathrm{G}}=0.22 \Omega \end{aligned}$		15		ns
Tr	Rise Time			20		
$\mathrm{T}_{\mathrm{d}(\text { (ff) }}$	Turn-off Delay Time			50		
T_{f}	Fall Time			10		

Source - Drain diode ratings and characteristics

Symbol	Characteristic	Test Conditions		Min	Typ	Max	Unit
I_{S}	Continuous Source current (Body diode)		$\mathrm{Tc}=25^{\circ} \mathrm{C}$			149	A
			$\mathrm{Tc}=80^{\circ} \mathrm{C}$			111	
$\mathrm{V}_{\text {SD }}$	Diode Forward Voltage	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-149 \mathrm{~A}$				1.3	V
dv/dt	Peak Diode Recovery ${ }^{1}$	$\mathrm{I}_{\mathrm{S}}=-149 \mathrm{~A}$				5	V/ns
t_{rr}	Reverse Recovery Time					250	ns
		$\mathrm{di}_{\mathrm{s}} / \mathrm{dt}=800 \mathrm{~A} / \mu \mathrm{s}$	$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$			500	
Q_{rr}	Reverse Recovery Charge	$\begin{aligned} & \mathrm{I}_{\mathrm{S}}=-149 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{R}}=250 \mathrm{~V} \\ & \mathrm{di} / \mathrm{dt}=800 \mathrm{~A} / \mu \mathrm{S} \end{aligned}$	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		10.4		$\mu \mathrm{C}$
			$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$		36		

(1) dv/dt numbers reflect the limitations of the circuit rather than the device itself.
$\mathrm{I}_{\mathrm{S}} \leq-149 \mathrm{~A} \quad \mathrm{di} / \mathrm{dt} \leq 700 \mathrm{~A} / \mu \mathrm{s} \quad \mathrm{V}_{\mathrm{R}} \leq \mathrm{V}_{\mathrm{DSS}} \quad \mathrm{T}_{\mathrm{j}} \leq 150^{\circ} \mathrm{C}$

APTM50AM25FTG
POWER PRODUCTS GROUP

Thermal and package characteristics
Symbol Characteristic

$\mathrm{R}_{\text {thJC }}$	Junction to Case Thermal Resisatnce				0.1	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{V}_{\text {ISOL }}$	RMS Isolation Voltage, any terminal to case $\mathrm{t}=1 \mathrm{~min}$, I isol $<1 \mathrm{~mA}, 50 / 60 \mathrm{~Hz}$			2500		V
T_{J}	Operating junction temperature range			-40	150	
$\mathrm{T}_{\text {STG }}$	Storage Temperature Range			-40	125	${ }^{\circ} \mathrm{C}$
T_{C}	Operating Case Temperature			-40	100	
Torque	Mounting torque	To heatsink	M5	2	3.5	N.m
		For terminals	M5	2	3.5	
Wt	Package Weight				550	g

Temperature sensor NTC (see application note APT0406 on www.microsemi.com for more information).

Symbol	Characteristic		Min	Typ	Max	Unit
R_{25}	Resistance @ $25^{\circ} \mathrm{C}$			50		$\mathrm{k} \Omega$
$\Delta \mathrm{R}_{25} / \mathrm{R}_{25}$				5		\%
$\mathrm{B}_{25 / 85}$	$\mathrm{T}_{25}=298.15 \mathrm{~K}$			3952		K
$\Delta \mathrm{B} / \mathrm{B}$		$\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$		4		\%

$$
R_{T}=\frac{R_{25}}{\exp \left[B_{25 / 85}\left(\frac{1}{T_{25}}-\frac{1}{T}\right)\right]} \quad \begin{aligned}
& \mathrm{T}: \text { Thermistor temperature } \\
& \mathrm{R}_{\mathrm{T}}: \text { Thermistor value at } \mathrm{T}
\end{aligned}
$$

Package outline (dimensions in mm)

Microsemi reserves the right to change, without notice, the specifications and information contained herein
Microsemi's products are covered by one or more of U.S patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 $5,283,2025,231,4745,434,0955,528,0586,939,7437,352,0455,283,201 \quad 5,801,4175,648,2837,196,6346,664,5947,157,8866,939,7437,342,262$ and foreign patents. U.S and Foreign patents pending. All Rights Reserved.

