

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

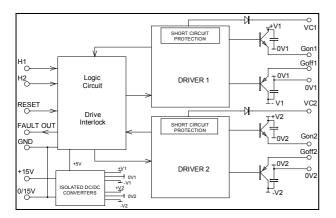
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China





Dual IGBT Isolated Driver (Non Inverting)

$V_{Cmax} = 1200V$ $I_{OUTpeak} = 8A$ @ Tc = 25°C

Application

- Driver dedicated to IGBT Power modules in :
 - Motor Control
 - Uninterruptible Power Supplies
 - Switched Mode Power Supplies
 - Welding converters
 - Automotive

Features

- Drive IGBTs up to I_C =300A, V_{CE} =1200V
- Short circuit protection by V_{CEsat} monitoring
- Low speed overcurrent cut off to limit over voltage
- Under voltage Lockout with hysteresis
- Top Bottom input signals Interlock
- Switching frequency up to 50 kHz
- Low stray inductance
- High level of integration
- Isolated driver

Benefits

- Outstanding performance at high frequency operation
- Rugged
- Stable temperature behavior
- Very high noise immunity (common mode rejection $> 10 \text{kV/}\mu\text{s}$)
- 2500V Galvanic Isolation primary/secondary
- 5V logic level with Schmitt-trigger Input
- Single V_{DD}=15V supply required
- Positive & Negative Secondary auxiliary power supplies internally generated
- Separate sink & Source output for easy Gate drive (optimized turn on & turn off operation)
- Mounting with screws for good vibration withstand
- Solderable pins
- **RoHS Compliant**

CAUTION: These Devices are sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.

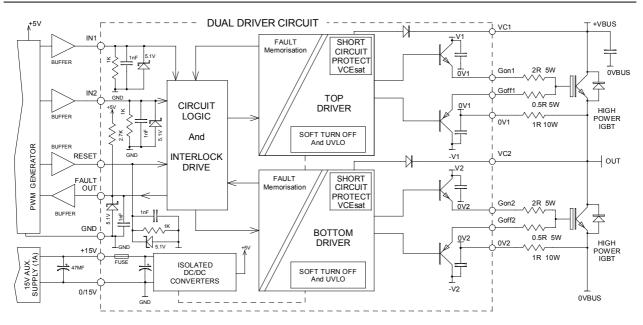


fig 1:Typical phase leg Operation Block Diagram

All ratings @ $T_j = 25$ °C unless otherwise specified

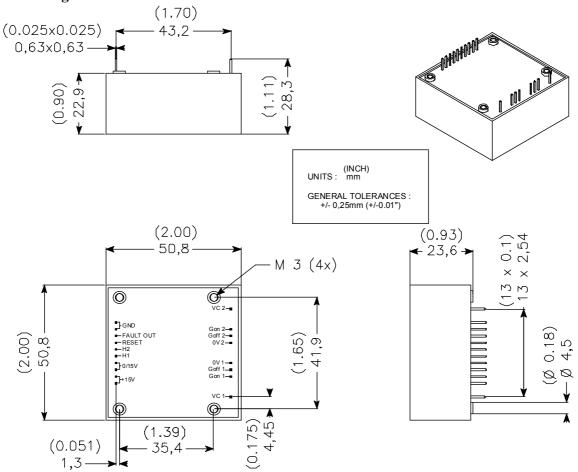
Absolute maximum ratings

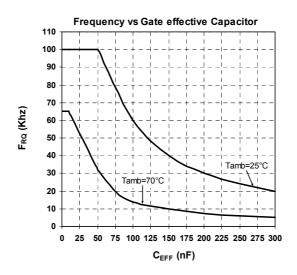
Symbol	Parameter		Max ratings	Unit	
$V_{ m DD}$	Supply Voltage		16	V	
$ m V_{Hi}$	Input signal voltage i=1, 2		5.5	v	
I _{VDDmax}	Maximum Supply current $V_{Hi} = 0V, i = 1, 2$		0.3	A	
	$V_{DD}=15V, F_{out}=25$	kHz, C _{eff} =150nF	1		
f_{max}	Maximum Switching Frequency @ T _{amb} =85°C		50	kHz	
$V_{\rm C}$	Collector Voltage short circuit protection pin		1200	V	
Iout _{AVmax}	Output Average Current	Per Output	270	mA	
R_{Gonmin}	Minimum resistance for RGon		2	Ω	
$R_{Goffmin}$	Minimum resistance for RGoff		1		
Pout	Output Power DC/DC converter	Per Output	4	W	
Iout peak	Sink and Source		8	A	

Driver Electrical Characteristics

Symbol	Characteristic	Test Conditions	Min	Тур	Max	Unit
$V_{ m DD}$	Operating Supply Voltage		14.5	15	15.5	V
I_{VDD}	Operating Supply Current	F _{out} =25kHz,V _{DD} =15V,V _{Bus} =600V C _{eff} =150nF on Channel 1&2		0.75		A
$V_{\rm UVLO}$	Under Voltage lockout threshold		11.6	12.3	13.5	V
$V_{\text{Hi(max)}}$	Maximum Input Voltage		-0.5	5	5.5	
$V_{Hi(th+)}$	Positive Going Threshold Voltage		2			V
V _{Hi(th-)}	Negative Going Threshold Voltage	i = 1, 2			0.8	
C_{Hi}	Input Capacitance *			1		nF
R_{Hi}	Input Resistance *			1		kΩ
V	Turn on Gate Voltage Output	No Load	14	15	16	
$V_{G(on)}$	Turn on Gate Voltage Output	$R_{Gon}=2\Omega$, $F_{out}=25$ kHz, $C_{eff}=150$ nF		14		17
17	Turn off Gate Voltage Output	No Load	-7	-6	-5	V
$V_{G(off)}$		$R_{Goff}=1\Omega$, $F_{out}=25kHz$, $C_{eff}=150nF$		-5		
$T_{d(on)}$	Turn On delay time	$C_{\text{eff}} = 150 \text{nF}$	200	400	500	nc
$T_{d(off)}$	Turn Off delay time	$C_{\text{eff}} = 150 \text{nF}$	220	420	520	ns
PWD	Pulse Width Distortion		-0.3	0.02	0.3	
PDD	Propagation Delay Difference between any two driver	$T_{d(on)}$ - $T_{d(off)}$	-0.35		0.35	μs
I_{fault}	Output fault current	Fault condition			7	mA
V_{faultH}	High Output Fault Voltage	No fault		5		V
V_{faultL}	Low Output Fault Voltage	Fault condition			0.5	V
Tdfault	Desat Fault Output Delay Time	$V_{DD}=15V$			5	μs
T_{SC}	Total Short Circuit Duration				6	μs
I_{SC}	Short Circuit Current	T_{sc} =6 μs , V_{Bus} =600V, V_{GE} =15V		950		A
C_{PS}	Coupling Capacitance Primary Secondary			20		pF
R_{PW}	Reset Pulse Width	Logic high for reset	20			μs
R_R	Reset Input Resistance			1		kΩ
F_R	Fault output pull-up resistance			2.7		K22

Thermal and package characteristics


Symbol	Characteristic		Min	Тур	Max	Unit
V_{ISOL}	Primary to Secondary Isolation		2500			V
T_{OP}	Operating Ambient Temperature		-40		85	°C
T_{STG}	Storage Temperature Range		-55		100	C
Torque	Mounting torque	M3		0.5		N.m
Wt	Package Weight				120	g


^{*} Low impedance guarantees good noise immunity.

• Dead time between top and bottom inputs signals must be generated externally in case of phase leg operation

Driver Package outline

Microsemi reserves the right to change, without notice, the specifications and information contained herein

Microsemi's products are covered by one or more of U.S patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. U.S and Foreign patents pending. All Rights Reserved.