

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

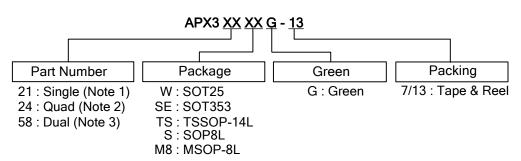
Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Features

General Description

(For V⁺=5V and V⁻=0V typical unless otherwise noted)


- Guaranteed 2.7V and 5V performance
- Crossover distortion eliminated
- Operating temperature range (-40°C to +85°C)
- · Gain-bandwidth 1 MHz
- Low supply current
 - APX321 110 μA Typ
 - APX358 190 μA Typ
 - APX324 340 μA Typ
- Rail-to-rail output swing @ 10 kΩ
 - V⁺ -10 mV
 - V +10 mV
- Input Common Mode Voltage Range (0 to V⁺-0.2V)
- Manufactured in standard CMOS process
- SOT353, SOT25, MSOP-8L, SOP-8L and TSSOP-14L: Available in "Green" Molding Compound (No Br, Sb)
- Lead-free Finish / RoHS Compliant (Note 4)

The APX321/APX358/APX324 are low voltage (2.5V to 5.5V) dual and quad operational amplifiers. APX321/APX358/APX324 are designed to effectively reduce cost and space at low voltage levels. These devices have the capability of rail-to-rail output swing and input common-mode voltage range. They can also achieve an efficient speed-to-power ratio, utilizing 1 MHz bandwidth and 1 V/µs slew rate at a low supply current. Reducing noise pickup and increasing signal integrity can be achieved by placing the device close to the signal source. The APX321 is available in 5-Pin SOT353/SOT25 packages that reduce space on pc boards and portable electronic devices. The APX324 is available in the TSSOP-14L package. The APX358 is available in the MSOP-8L and SOP-8L packages.

Applications

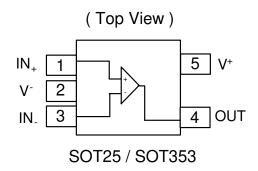
- Active filters
- General purpose low voltage applications
- General purpose portable devices

Ordering Information

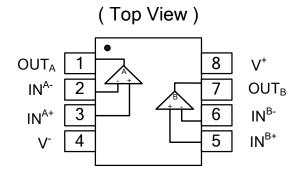
	Device	Package	Packaging	7"/13" Tape and Reel			
	Device	Code	(Note 5)	Quantity	Part Number Suffix		
P	APX321WG-7	W	SOT25	3000/Tape & Reel	-7		
PD	APX321SEG-7	SE	SOT353	3000/Tape & Reel	-7		
PD	APX324TSG-13	TS	TSSOP-14L	2500/Tape & Reel	-13		
PD	APX358SG-13	S	SOP-8L	2500/Tape & Reel	-13		
PD	APX358M8G-13	M8	MSOP-8L	2500/Tape & Reel	-13		

Notes:

- 1. APX321 is only available for SOT25 and SOT353.
- 2. APX324 is only available for TSSOP-14L.
- 3. APX358 is only available for SOP-8L and MSOP-8L.
- 4. EU Directive 2002/95/EC (RoHS). All applicable RoHS exemptions applied. Please visit our website at

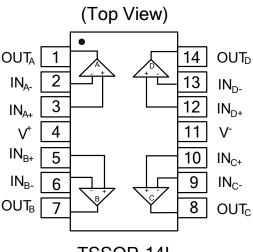

http://www.diodes.com/products/lead free.html

5. Pad layout as shown on Diodes Inc. suggested pad layout document AP02001, which can be found on our website at http://www.diodes.com/datasheets/ap02001.pdf.



Pin Assignments

(1) SOT25 / SOT353



(2) SOP-8L / MSOP-8L

SOP-8L / MSOP-8L

(3) TSSOP-14L

TSSOP-14L

Absolute Maximum Ratings (Note 6)

Symbol	Description		Rating	Unit
	Llurana Dadu Madal ECD	APX321	4000	
ESD HBM	Human Body Model ESD Protection	APX358	4000	V
	1 Totalion	APX324	4500	
		APX321	350	
ESD MM	Machine Model ESD Protection	APX358	350	V
		APX324	250	
	Differential Input Voltage		±Supply Voltage	V
V ⁺ -V ⁻	Supply Voltage		5.5	V
	Output Short Circuit to V ⁺		(Note 7)	
	Output Short Circuit to V		(Note 8)	
T _{ST}	Storage Temperature		-65 to 150	°C
T _J	Maximum Junction Temperature		150	°C

Operating Ratings (Note 6)

Symbol	Description	Rating	Unit
V ⁺ -V ⁻	Supply Voltage	2.5 to 5.5	V
T _A	Operating Ambient Temperature Range	-40 to +85	°C

Notes: 6. Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics.

Electrical Characteristics

2.7V DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_A = 25$ °C, $V^* = 2.7$ V, $V^- = 0$ V, $V_{CM} = 1.0$ V, $V_O = V^*/2$ and $R_L > 1$ $M\Omega$.

Symbol	Parameter	Test Conditions	Min (Note 10)	Typ. (Note 9)	Max (Note 10)	Unit
Vos	Input Offset Voltage			1.7	7	mV
TCVos	Input Offset Voltage Average Drift			5		μV/°C
I _B	Input Bias Current			10		nA
I _{os}	Input Offset Current			5	50	nA
CMRR	Common Mode Rejection Ratio	$0V \leq V_{CM} \leq 2.4V$	50	63		dB
PSRR	Power Supply Rejection Ratio	$ 2.7V \le V^+ \le 5V $ $V_O = 1V $	50	60		dB
V _{CMR}	Input Common-Mode Voltage Range	For CMRR ≥ 50dB	0	-0.2		V
V CMR					2.5	V
Vo	Output Swing	$R_L = 10 \text{ k}\Omega$ to 1.35V	V ⁺ - 100	V ⁺ - 20		mV
V O				20	100	111 V
		APX321 Single amplifier		110	140	μΑ
Is	Supply Current	APX358 Both amplifiers		190	340	μΑ
		APX324 All four amplifiers		340	680	μΑ

2.7V AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_A = 25^{\circ}C$, $V^+ = 2.7V$, $V^- = 0V$, $V_{CM} = 1.0V$, $V_O = V^+/2$ and $R_L > 1$ M Ω .

Sy	ymbol	Parameter	Test Conditions	Min (Note 10)	Typ. (Note 9)	Max (Note 10)	Unit
G	BWP	Gain-Bandwidth Product	C _L = 200 pF		1		MHz
	Φт	Phase Margin			60		Deg
	Gm	Gain Margin			10		dB
	e _n	Input-Referred Voltage Noise	f > 50 KHz		23		$\frac{nV}{\sqrt{H_z}}$

Electrical Characteristics (Continued)

5V DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_A = 25$ °C, $V^+ = 5V$, $V^- = 0V$, $V_{CM} = 2.0V$, $V_O = V^+/2$ and

 $R_L > 1 \text{ M}\Omega$. **Boldface** limits apply at the temperature extremes.

Symbol	Parameter Parameter	Test Conditions	Min (Note 10)	Typ. (Note 9)	Max (Note 10)	Unit
V_{OS}	Input Offset Voltage			1.7	7 9	mV
TCVos	Input Offset Voltage Average Drift			5		μV/°C
l _Β	Input Bias Current			15	250 500	nA
Ios	Input Offset Current			5	50 150	nA
CMRR	Common Mode Rejection Ratio	$0V \leq V_{\text{CM}} \leq 4.7V$	50	65		dB
PSRR	Power Supply Rejection Ratio	$2.7V \le V^{+} \le 5V$ $V_{O} = 1V, V_{CM} = 1V$	50	60		dB
V	Input Common-Mode	For CMRR ≥ 50dB	0	-0.2		V
V _{CMR}	Voltage Range	FUI CIVINN 2 300D			4.8	V
A_{V}	Large Signal Voltage Gain	$R_L = 2 k\Omega \text{ (Note 11)}$	15 10	100		V/mV
	Output Swing	$R_L = 2 \text{ k}\Omega$ to 2.5V	V ⁺ - 300 V⁺ - 400	V ⁺ - 50		mV
V				50	300 400	mV
Vo		$R_L = 10 \text{ k}\Omega \text{ to } 2.5 \text{V}$	V ⁺ - 100 V ⁺ - 200	V ⁺ - 10		mV
				10	180 280	mV
ı	Output Short Circuit	Sourcing, V _O = 0V	5	60		mA
Io	Current	Sinking, $V_0 = 5V$	10	90		mA
		APX321 Single amplifier		110	140	μΑ
Is	Supply Current	APX358 Both amplifiers		190	340 600	μΑ
		APX324 All four amplifiers		340	680 1100	μΑ
		SOT353 (Note 12)		330		°C/W
		SOT25 (Note 12)		250		°C/W
θ_{JA}	Thermal Resistance Junction-to-Ambient	TSSOP-14L (Note 12)		100		°C/W
		MSOP-8L (Note 12)		203		°C/W
		SOP-8L (Note 12)		150		°C/W

APX321/APX358/APX324

LOW VOLTAGE, RAIL-TO-RAIL INPUT AND OUTPUT SINGLE/DUAL/QUAD OPERATIONAL AMPLIFIERS

Electrical Characteristics (Continued)

5V AC Electrical Characteristics

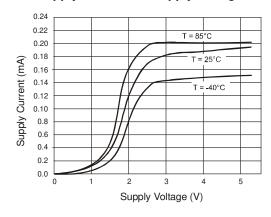
Unless otherwise specified, all limits guaranteed for $T_A = 25^{\circ}C$, $V^{\circ} = 5V$, V = 0V, $V_{CM} = 2.0V$, $VO = V^{\circ}/2$ and $R_L > 1$ M Ω . **Boldface** limits apply at the temperature extremes.

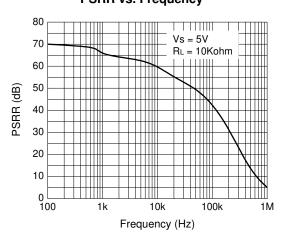
Symbol	Parameter	Test Conditions	Min (Note 10)	Typ. (Note 9)	Max (Note 10)	Unit
SR	Slew Rate	(Note 13)		1		V/µs
GBWP	Gain-Bandwidth Product	C _L = 200 pF		1		MHz
Φ_{m}	Phase Margin			60		Deg
G_{m}	Gain Margin			10		dB
e _n	Input-Referred Voltage Noise	f > 50 KHz		23		$\frac{\text{nV}}{\sqrt{\text{H}_{\text{z}}}}$

Notes:

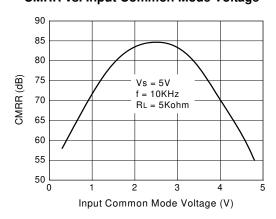
- 7. Shorting output to V+ will adversely affect reliability. 8. Shorting output to V- will adversely affect reliability.
- 9. Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration. The typical values are not tested and are not guaranteed on shipped production material.

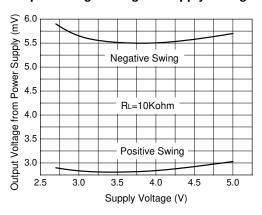
 10. All limits are guaranteed by testing or statistical analysis.
- 11. R_L is connected to V-. The output voltage is $0.5V \le V_O \le 4.5V$.
- 12. All numbers are typical, and apply for packages soldered directly onto a PC board in still air.

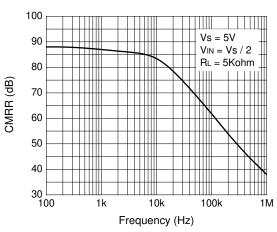

 13. Connected as voltage follower with 3V step input. Number specified is the slower of the positive and negative slew rates.

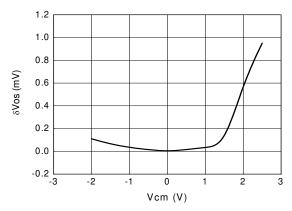

Typical Performance Characteristics

Unless otherwise specified, Vs=+5V, single supply, T_A =25°C

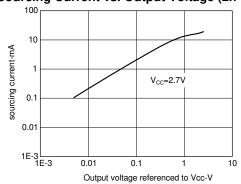

Supply Current vs. Supply Voltage

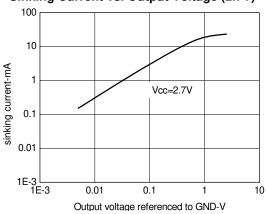

PSRR vs. Frequency


CMRR vs. Input Common Mode Voltage

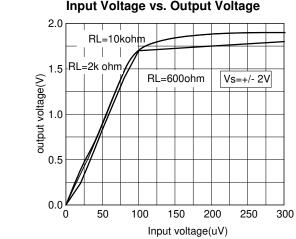

Output Voltage Swing vs. Supply Voltage

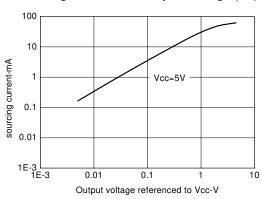
CMRR vs. Frequency

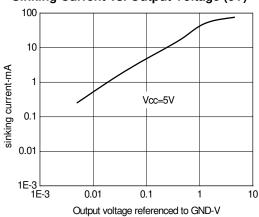

$\Delta \text{Vos vs. CMR}$



Typical Performance Characteristics (Continued)

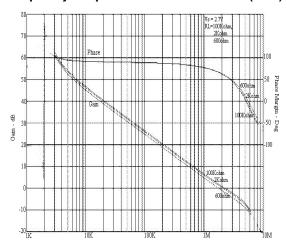

Sourcing Current vs. Output Voltage (2.7V)

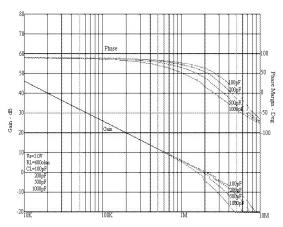

Sinking Current vs. Output Voltage (2.7V)


Input Voltage vs. Output Voltage

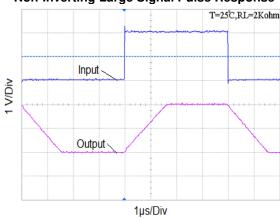
Sourcing Current vs. Output Voltage (5V)

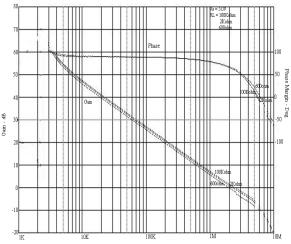
Sinking Current vs. Output Voltage (5V)

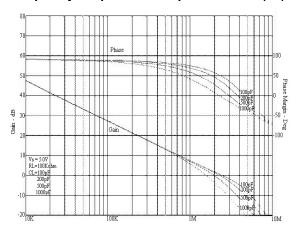


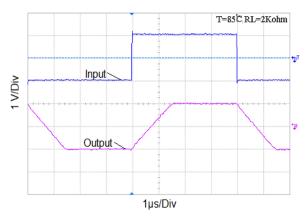


Typical Performance Characteristics (Continued)


Frequency Response vs. Resistive Load (2.7V)

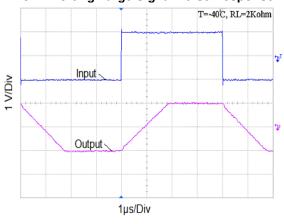

Frequency Response vs. Capacitive Load (2.7V)

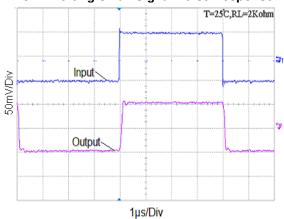

Non-Inverting Large Signal Pulse Response


Frequency Response vs. Resistive Load (5V)

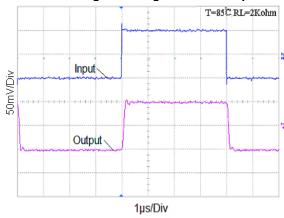
Frequency Response vs. Capacitive Load (5V)

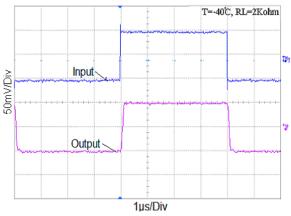
Non-Inverting Large Signal Pulse Response

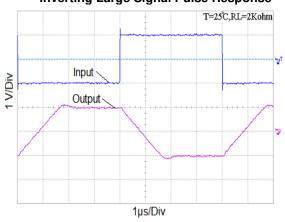


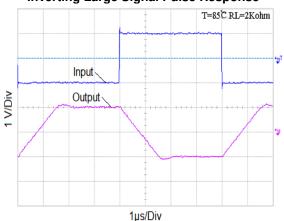


Typical Performance Characteristics (Continued)

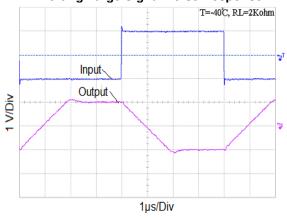

Non-Inverting Large Signal Pulse Response

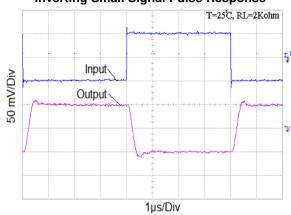

Non-Inverting Small Signal Pulse Response


Non-Inverting Small Signal Pulse Response

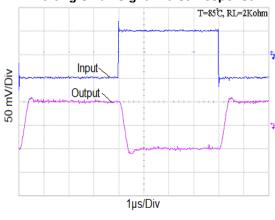

Non-Inverting Small Signal Pulse Response

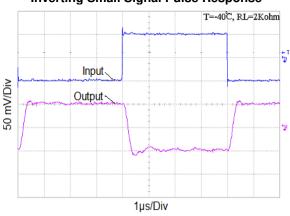
Inverting Large Signal Pulse Response

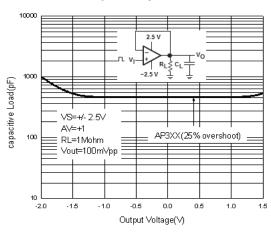

Inverting Large Signal Pulse Response

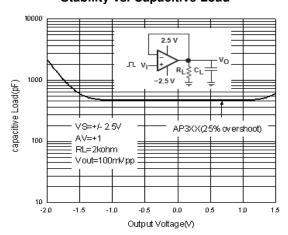


Typical Performance Characteristics (Continued)

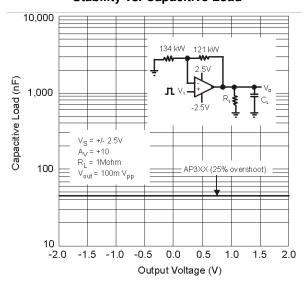

Inverting Large Signal Pulse Response

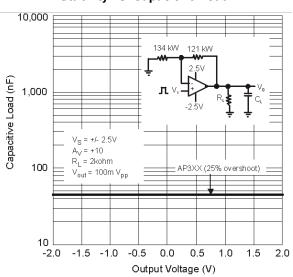

Inverting Small Signal Pulse Response


Inverting Small Signal Pulse Response

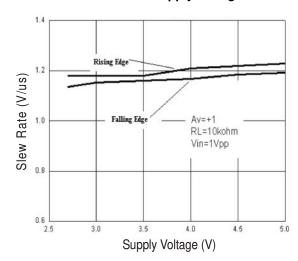

Inverting Small Signal Pulse Response

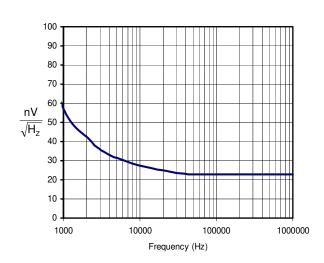
Stability vs. Capacitive Load


Stability vs. Capacitive Load

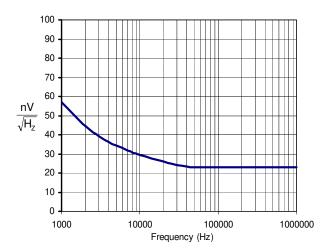


Typical Performance Characteristics (Continued)

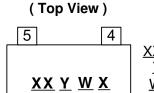

Stability vs. Capacitive Load


Stability vs. Capacitive Load

Slew Rate vs. Supply Voltage


Input Voltage Noise

Typical Performance Characteristics (Continued)


Input Voltage Noise (2.7V)

Marking Information

(1) SOT25 / SOT353

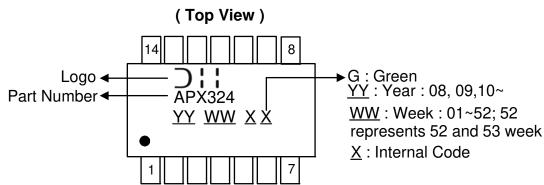
2

3

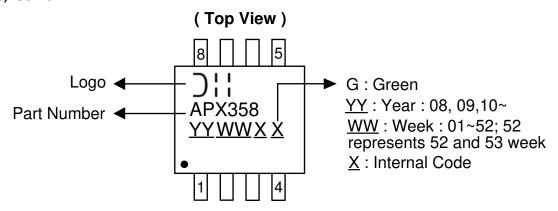
XX: Identification code

Y: Year 0~9

W: Week: A~Z: 1~26 week;

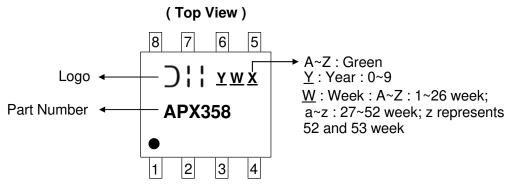

a~z: 27~52 week; z represents

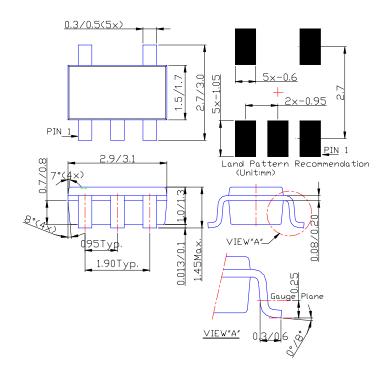
52 and 53 week


X : A~Z : Green

Device	Package type	Identification Code		
APX321W	SOT25	V2		
APX321SE	SOT353	V3		

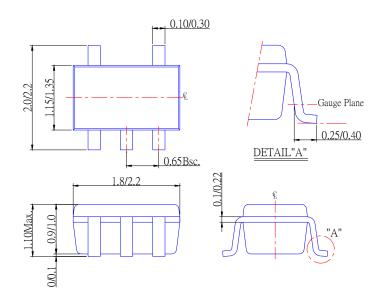
(2) TSSOP-14L

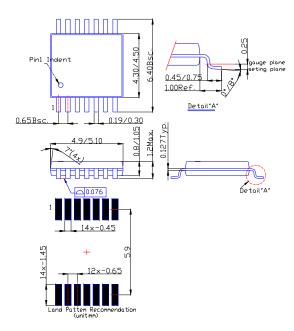

(3) SOP-8L


Marking Information (Continued)

(4) MSOP-8L

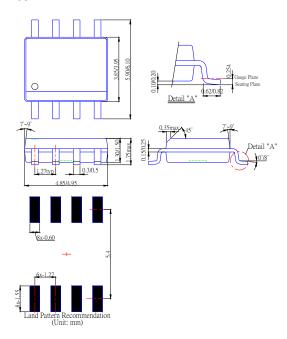
Package Information (All Dimensions in mm)

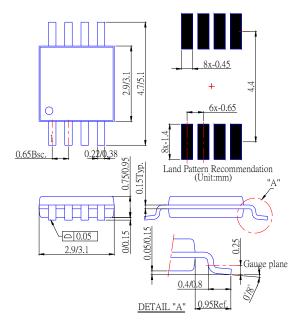

(1) Package Type: SOT25



Package Information (Continued)

(2) Package Type: SOT353


(3) Package Type: TSSOP-14L



Package Information (Continued)

(4) Package Type: SOP-8L

(5) Package Type: MSOP-8L

DIODES.

APX321/APX358/APX324

LOW VOLTAGE, RAIL-TO-RAIL INPUT AND OUTPUT SINGLE/DUAL/QUAD OPERATIONAL AMPLIFIERS

IMPORTANT NOTICE

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to any product herein. Diodes Incorporated does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights, nor the rights of others. The user of products in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on our website, harmless against all damages.

LIFE SUPPORT

Diodes Incorporated products are not authorized for use as critical components in life support devices or systems without the expressed written approval of the President of Diodes Incorporated.