imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

MCP6N11

500 kHz, 800 µA Instrumentation Amplifier

Features

- Rail-to-Rail Input and Output
- Gain Set by 2 External Resistors
- Minimum Gain (G_{MIN}) Options: 1, 2, 5, 10 or 100 V/V
- Common Mode Rejection Ratio (CMRR): 115 dB (typical, G_{MIN} = 100)
- Power Supply Rejection Ratio (PSRR): 112 dB (typical, G_{MIN} = 100)
- Bandwidth: 500 kHz (typical, Gain = G_{MIN})
- Supply Current: 800 µA/channel (typical)
- Single Channel
- Enable/V_{OS} Calibration pin: (EN/CAL)
- Power Supply: 1.8V to 5.5V
- Extended Temperature Range: -40°C to +125°C

Typical Applications

- High Side Current Sensor
- · Wheatstone Bridge Sensors
- · Difference Amplifier with Level Shifting
- Power Control Loops

Design Aids

- Microchip Advanced Part Selector (MAPS)
- Demonstration Board
- Application Notes

Block Diagram

Description

Microchip Technology Inc. offers the single MCP6N11 instrumentation amplifier (INA) with Enable/V_{OS} Calibration pin (EN/CAL) and several minimum gain options. It is optimized for single-supply operation with rail-to-rail input (no common mode crossover distortion) and output performance.

Two external resistors set the gain, minimizing gain error and drift-over temperature. The reference voltage (V_{REF}) shifts the output voltage (V_{OUT}).

The supply voltage range (1.8V to 5.5V) is low enough to support many portable applications. All devices are fully specified from -40° C to $+125^{\circ}$ C.

These parts have five minimum gain options (1, 2, 5, 10) and 100 V/V. This allows the user to optimize the input offset voltage and input noise for different applications.

Typical Application Circuit

Package Types

Minimum Gain Options

Table 1 shows key specifications that differentiate between the different minimum gain (G_{MIN}) options. See Section 1.0 "Electrical Characteristics", Section 6.0 "Packaging Information" and Product Identification System for further information on G_{MIN} .

Part No.	G _{MIN} (V/V) Nom.	V _{OS} (±mV) Max.	ΔV _{OS} /ΔT _A (±μV/°C) Τyp.	CMRR (dB) Min. V _{DD} = 5.5V	PSRR (dB) Min.	V _{DMH} (V) Max.	GBWP (MHz) Nom.	E _{ni} (μV _{P-P}) Nom. (f = 0.1 to 10 Hz)	e _{ni} (nV/√Hz) Nom. (f = 10 kHz)
MCP6N11-001	1	3.0	90	70	62	2.70	0.50	570	950
MCP6N11-002	2	2.0	45	78	68	1.35	1.0	285	475
MCP6N11-005	5	0.85	18	80	75	0.54	2.5	114	190
MCP6N11-010	10	0.50	9.0	81	81	0.27	5.0	57	95
MCP6N11-100	100	0.35	2.7	88	86	0.027	35	18	35

TABLE 1: KEY DIFFERENTIATING SPECIFICATIONS

1.0 ELECTRICAL CHARACTERISTICS

1.1 Absolute Maximum Ratings †

$V_{DD} - V_{SS}$	6.5V
Current at Input Pins ++	±2 mA
Analog Inputs (V_{IP} and V_{IM}) $\uparrow \uparrow \ \ V_{SS} - 1.0V$ to	0 V _{DD} + 1.0V
All Other Inputs and Outputs V_{SS} – 0.3V to	0 V _{DD} + 0.3V
Difference Input Voltage	$ V_{DD} - V_{SS} $
Output Short Circuit Current	. Continuous
Current at Output and Supply Pins	±30 mA
Storage Temperature65°	C to +150°C
Max. Junction Temperature	+150°C
ESD protection on all pins (HBM, CDM, MM).≥ 2 kV,	1.5 kV, 300V

† Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

†† See Section 4.2.1.2 "Input Voltage Limits" and Section 4.2.1.3 "Input Current Limits".

1.2 Specifications

TABLE 1-1:DC ELECTRICAL SPECIFICATIONS

Electrical Characteristics	: Unless oth	erwise indicate	ed, T _A = +25°	C, V _{DD} = 1.8\	/ to 5.5V	, V _{SS} = GN	ID, EN/CAL = V _{DD} ,
$V_{CM} = V_{DD}/2, V_{DM} = 0V, V$	$_{REF} = V_{DD}/2,$	$V_L = V_{DD}/2$, R	R_L = 10 k Ω to	V _L and G _{DM} =	= G _{MIN} ; s	see Figure	1-6 and Figure 1-7.

Parameters	Sym	Min	Тур	Мах	Units	G _{MIN}	Conditions
Input Offset							
Input Offset Voltage,	V _{OS}	-3.0	—	+3.0	mV	1	(Note 2)
Calibrated		-2.0	_	+2.0	mV	2	
		-0.85	_	+0.85	mV	5	
		-0.50	—	+0.50	mV	10	
		-0.35	_	+0.35	mV	100	
Input Offset Voltage	V _{OSTRM}	_	0.36	—	mV	1	
Trim Step			0.21	_	mV	2	
		_	0.077	—	mV	5	
		_	0.045	—	mV	10	
			0.014	_	mV	100	
Input Offset Voltage	$\Delta V_{OS} / \Delta T_A$		±90/G _{MIN}	—	µV/°C	1 to 10	T _A = -40°C to +125°C
Drift		_	±2.7	—	µV/°C	100	(Note 3)
Power Supply	PSRR	62	82	—	dB	1	
Rejection Ratio		68	88	—	dB	2	
		75	96	—	dB	5	
		81	102	_	dB	10	
		86	112	_	dB	100	

Note 1: $V_{CM} = (V_{IP} + V_{IM}) / 2$, $V_{DM} = (V_{IP} - V_{IM})$ and $G_{DM} = 1 + R_F/R_G$.

2: The V_{OS} spec limits include 1/f noise effects.

3: This is the input offset drift without V_{OS} re-calibration; toggle EN/CAL to minimize this effect.

4: These specs apply to both the V_{IP} , V_{IM} input pair (use V_{CM}) and to the V_{REF} , V_{FG} input pair (V_{REF} takes V_{CM} 's place).

5: This spec applies to the V_{IP} , V_{IM} , V_{REF} and V_{FG} pins individually.

6: Figure 2-11 and Figure 2-19 show the V_{IVR} and V_{DMR} variation over temperature.

7: See Section 1.5 "Explanation of DC Error Specs".

TABLE 1-1: DC ELECTRICAL SPECIFICATIONS (CONTINUED)

Electrical Characteristics $V_{CM} = V_{DD}/2, V_{DM} = 0V, V$	s: Unless oth _{REF} = V _{DD} /2,	erwise indicate V _L = V _{DD} /2, R	d, T _A = +25° _L = 10 kΩ to	C, $V_{DD} = 1.8$ V _L and $G_{DM} = 1.8$	√ to 5.5V = G _{MIN} ; s	, V _{SS} = GI see Figure	ND, EN/CAL = V _{DD} , 1-6 and Figure 1-7.
Parameters	Sym	Min	Тур	Max	Units	G _{MIN}	Conditions
Input Current and Imp	edance (N	ote 4)					
Input Bias Current	I _B	—	10	—	pА	all	
Across Temperature		_	80	_	pА		T _A = +85°C
Across Temperature		0	2	5	nA		T _A = +125°C
Input Offset Current	I _{OS}	_	±1	_	pА		
Across Temperature		_	±5	_	pА		T _A = +85°C
Across Temperature		-1	±0.05	+1	nA		T _A = +125°C
Common Mode Input Impedance	Z _{CM}	—	10 ¹³ 6	—	Ω∥pF		
Differential Input Impedance	Z _{DIFF}	—	10 ¹³ 3	—	Ω∥pF		
Input Common Mode	Voltage (V _C	_{CM} or V _{REF})(Note 4)				
Input Voltage Range	V _{IVL}	—	—	$V_{SS}-0.2$	V	all	(Note 5, Note 6)
	V _{IVH}	V _{DD} + 0.15	—	—	V		
Common Mode	CMRR	62	79	—	dB	1	$V_{CM} = V_{IVL}$ to V_{IVH} ,
Rejection Ratio		69	87	—	dB	2	V _{DD} = 1.8V
		75	101	—	dB	5	
		79	107	_	dB	10	
		86	119	—	dB	100	
		70	94	—	dB	1	$V_{CM} = V_{IVL}$ to V_{IVH} ,
		78	100	_	dB	2	V _{DD} = 5.5V
		80	108	—	dB	5	
		81	114	—	dB	10	
		88	115	—	dB	100	
Common Mode	INL _{CM}	-1000	±115	+1000	ppm	1	$V_{CM} = V_{IVL}$ to V_{IVH} ,
Non-Linearity		-570	±27	+570	ppm	2	$V_{DM} = 0V,$
		-230	±11	+230	ppm	5	$v_{DD} = 1.8V (Note 7)$
		-125	±6	+125	ppm	10	
		-50	±2	+50	ppm	100	
		-400	±42	+400	ppm	1	$V_{CM} = V_{IVL}$ to V_{IVH} ,
		-220	±10	+220	ppm	2	$V_{DM} = 0V,$
		-100	±4	+100	ppm	5	v _{DD} = 5.5V (Note /)
		-50	±2	+50	ppm	10	
		-30	±1	+30	ppm	100	

Note 1: $V_{CM} = (V_{IP} + V_{IM}) / 2$, $V_{DM} = (V_{IP} - V_{IM})$ and $G_{DM} = 1 + R_F/R_G$.

2: The V_{OS} spec limits include 1/f noise effects.

3: This is the input offset drift without V_{OS} re-calibration; toggle EN/CAL to minimize this effect.

4: These specs apply to both the V_{IP}, V_{IM} input pair (use V_{CM}) and to the V_{REF}, V_{FG} input pair (V_{REF} takes V_{CM}'s place).
5: This spec applies to the V_{IP}, V_{IM}, V_{REF} and V_{FG} pins individually.

6: Figure 2-11 and Figure 2-19 show the V_{IVR} and V_{DMR} variation over temperature.

7: See Section 1.5 "Explanation of DC Error Specs".

Electrical Characteristics: Unless otherwise indicated, $T_A = +25^{\circ}C$, $V_{DD} = 1.8V$ to 5.5V, $V_{SS} = GND$, $EN/\overline{CAL} = V_{DD}$, $V_{CM} = V_{DD}/2$, $V_{DM} = 0V$, $V_{REF} = V_{DD}/2$, $V_L = V_{DD}/2$, $R_L = 10 \text{ k}\Omega$ to V_L and $G_{DM} = G_{MIN}$; see Figure 1-6 and Figure 1-7.										
Parameters	Sym	Min	Тур	Max	Units	G _{MIN}	Conditions			
Input Differential Mode Voltage (V _{DM}) (Note 4)										
Differential Input	V_{DML}	-2.7/G _{MIN}	—	—	V	all	$V_{REF} = (V_{DD} - G_{DM}V_{DM})/2$			
Voltage Range	V _{DMH}		_	+2.7/G _{MIN}	V		(Note 6)			
Differential Gain Error	9e	-1	±0.13	+1	%		$V_{DM} = V_{DML}$ to V_{DMH} ,			
Differential Gain Drift	$\Delta g_E / \Delta T_A$	_	±0.0006	—	%/°C		$V_{REF} = (V_{DD} - G_{DM}V_{DM})/2$			
Differential	INL _{DM}	-500	±30	+500	ppm	1	(Note 7)			
Non-Linearity		-800	±40	+800	ppm	2, 5				
		-2000	±100	+2000	ppm	10, 100				
DC Open-Loop Gain	A _{OL}	61	84	_	dB	1	V _{DD} = 1.8V,			
		68	90	_	dB	2	V _{OUT} = 0.2V to 1.6V			
		76	98	—	dB	5				
		78	104	_	dB	10				
		86	116	_	dB	100				
		70	94	—	dB	1	V _{DD} = 5.5V,			
		77	100	—	dB	2	V _{OUT} = 0.2V to 5.3V			
		84	108	—	dB	5				
		90	114	—	dB	10				
		97	125	—	dB	100				
Output										
Minimum Output Voltage Swing	V _{OL}	_	_	V _{SS} + 15	mV	all	$\begin{split} & V_{DM} = -V_{DD}/(2G_{DM}), \\ & V_{DD} = 1.8V, \\ & V_{REF} = V_{DD}/2 - 1V \end{split}$			
		_	—	V _{SS} + 25	mV		$V_{DM} = -V_{DD}/(2G_{DM}),$ $V_{DD} = 5.5V,$ $V_{REF} = V_{DD}/2 - 1V$			
Maximum Output Voltage Swing	V _{OH}	V _{DD} – 15	_	_	mV		$V_{DM} = V_{DD}/(2G_{DM}),$ $V_{DD} = 1.8V,$ $V_{REF} = V_{DD}/2 + 1V$			
		V _{DD} – 25	_	_	mV		$V_{DM} = V_{DD}/(2G_{DM}),$ $V_{DD} = 5.5V,$ $V_{REF} = V_{DD}/2 + 1V$			
Output Short Circuit	I _{SC}	_	±8	_	mA		V _{DD} = 1.8V			
Current		_	±30	—	mA		V _{DD} = 5.5V			
Power Supply										
Supply Voltage	V_{DD}	1.8		5.5	V	all				
Quiescent Current per Amplifier	IQ	0.5	0.8	1.1	mA		I _O = 0			
POR Trip Voltage	V _{PRL}	1.1	1.4	—	V					
	V _{PRH}	_	1.4	1.7	V					

TABLE 1-1: DC ELECTRICAL SPECIFICATIONS (CONTINUED)

1: $V_{CM} = (V_{IP} + V_{IM}) / 2$, $V_{DM} = (V_{IP} - V_{IM})$ and $G_{DM} = 1 + R_F/R_G$. Note

The V_{OS} spec limits include 1/f noise effects.
 This is the input offset drift without V_{OS} re-calibration; toggle EN/CAL to minimize this effect.

4: These specs apply to both the V_{IP} , V_{IM} input pair (use V_{CM}) and to the V_{REF} , V_{FG} input pair (V_{REF} takes V_{CM} 's place).

5: This spec applies to the V_{IP} , V_{IM} , V_{REF} and V_{FG} pins individually.

6: Figure 2-11 and Figure 2-19 show the V_{IVR} and V_{DMR} variation over temperature.

7: See Section 1.5 "Explanation of DC Error Specs".

TABLE 1-2: AC ELECTRICAL SPECIFICATIONS Electrical Characteristics: Unless otherwise indicated, T_A = 25°C, V_{DD} = 1.8V to 5.5V, V_{SS} = GND, $EN/CAL = V_{DD}$, $V_{CM} = V_{DD}/2$, $V_{DM} = 0V$, $V_{REF} = V_{DD}/2$, $V_L = V_{DD}/2$, $R_L = 10 \text{ k}\Omega$ to V_L , $C_L = 60 \text{ pF}$ and $G_{DM} = G_{MIN}$; see Figure 1-6 and Figure 1-7. **Parameters** Max Units Conditions Sym Min Тур G_{MIN} AC Response Gain Bandwidth GBWP 1 to 10 0.50 G_{MIN} MHz ____ ____ Product _ 35 MHz 100 ___ 0 Phase Margin ΡM 70 all _____ **Open-Loop Output** R_{OL} 0.9 kΩ 1 to 10 Impedance 0.6 kΩ 100 ____ ___ Power Supply PSRR ____ 94 ____ dB all f < 10 kHz **Rejection Ratio** 1 to 10 f < 10 kHz Common Mode CMRR 104 dB ____ ___ **Rejection Ratio** 94 dB 100 f < 10 kHz ____ **Step Response** Slew Rate 3 1 to 10 V_{DD} = 1.8V SR ____ ___ V/µs ____ 9 ____ V/µs $V_{DD} = 5.5V$ 2 V/µs 100 $V_{DD} = 1.8V$ ____ ____ 6 V/µs $V_{DD} = 5.5V$ ____ ___ $V_{CM} = V_{SS} - 1V$ (or $V_{DD} + 1V$) to $V_{DD}/2$, 10 Overdrive Recovery, t_{IRC} μs all _____ Input Common Mode $G_{DM}V_{DM}$ = ±0.1V, 90% of V_{OUT} change Overdrive Recovery, $V_{DM} = V_{DML} - (0.5V)/G_{MIN}$ 5 μs t_{IRD} ____ ____ Input Differential (or V_{DMH} + (0.5V)/ G_{MIN}) to 0V, Mode $V_{REF} = (V_{DD} - G_{DM}V_{DM})/2,$ 90% of V_{OUT} change Overdrive Recovery, 8 $G_{DM} = 2G_{MIN}, G_{DM}V_{DM} = 0.5V_{DD}$ to 0V, toR μs

90% of V_{OUT} change Noise Input Noise Voltage 1 to 10 | f = 0.1 Hz to 10 Hz Eni 570/G_{MIN} μV_{P-P} _____ 18 μV_{P-P} 100 950/G_{MIN} Input Noise Voltage e_{ni} ____ nV/√Hz 1 to 10 f = 100 kHz Density nV/√Hz 100 35 ____ Input Current Noise fA/√Hz 1 all f = 1 kHzi_{ni} Density

Output

 $V_{REF} = 0.75 V_{DD}$ (or $0.25 V_{DD}$),

Electrical Characteristics: Unless otherwise indicated, $T_A = 25^{\circ}C$, $V_{DD} = 1.8V$ to 5.5V, $V_{SS} = GND$, $EN/\overline{CAL} = V_{DD}$,										
$V_{CM} = V_{DD}/2$, $V_{DM} = 0V$, $V_{REF} = V_{DD}/2$, $V_L = V_{DD}/2$, $R_L = 10 \text{ k}\Omega$ to V_L , $C_L = 60 \text{ pF}$ and $G_{DM} = G_{MIN}$;										
see Figure 1-6 and Figure 1-7.										
Parameters	Sym	Min	Тур	Max	Units	G _{MIN}	Conditions			
EN/CAL Low Specification	ons									
EN/CAL Logic Threshold, Low	V _{IL}	V _{SS}	_	0.2 V _{DD}	V	all				
EN/CAL Input Current, Low	I _{ENL}	—	-0.1	_	nA		EN/CAL = 0V			
GND Current	I _{SS}	-7	-2.5	_	μA		EN/ <u>CAL</u> = 0V, V _{DD} = 5.5V			
Amplifier Output Leakage	I _{O(LEAK)}	_	10	_	nA		$EN/\overline{CAL} = 0V$			
EN/CAL High Specifications										
EN/CAL Logic Threshold, High	V _{IH}	0.8 V _{DD}		V_{DD}	V	all				
EN/CAL Input Current, High	I _{ENH}	—	-0.01	—	nA		EN/CAL = V _{DD}			
EN/CAL Dynamic Specif	ications									
EN/CAL Input Hysteresis	V _{HYST}	—	0.2	—	V	all				
EN/CAL Low to Amplifier Output High-Z Turn-off Time	t _{OFF}	_	3	10	μs		$EN/\overline{CAL} = 0.2V_{DD} \text{ to } V_{OUT} = 0.1(V_{DD}/2),$ $V_{DM}G_{DM} = 1 \text{ V}, V_{L} = 0\text{V}$			
EN/CAL High to Amplifier Output On Time	t _{ON}	12	20	28	ms		$EN/\overline{CAL} = 0.8V_{DD} \text{ to } V_{OUT} = 0.9(V_{DD}/2),$ $V_{DM}G_{DM} = 1 \text{ V}, V_{L} = 0\text{ V}$			
EN/ <u>CAL</u> Low to EN/CAL High low time	t _{ENLH}	100	—	—	μs		Minimum time before externally releasing EN/CAL (Note 1)			
Amplifier On to EN/CAL Low Setup Time	t _{ENOL}	—	100	—	μs					
POR Dynamic Specificat	ions									
$V_{DD} \downarrow$ to Output Off	t _{PHL}	_	10	—	μs	all	$V_L = 0V$, $V_{DD} = 1.8V$ to $V_{PRL} - 0.1V$ step, 90% of V_{OUT} change			
$V_{DD} \uparrow$ to Output On	t _{PLH}	140	250	360	ms		$V_L = 0V, V_{DD} = 0V$ to $V_{PRH} + 0.1V$ step, 90% of V_{OUT} change			

TABLE 1-3: DIGITAL ELECTRICAL SPECIFICATIONS

Note 1: For design guidance only; not tested.

TABLE 1-4: TEMPERATURE SPECIFICATIONS

Electrical Characteristics: Unless otherwise indicated, all limits are specified for: V _{DD} = 1.8V to 5.5V, V _{SS} = GND.									
Parameters	Sym	Min	Тур	Max	Units	Conditions			
Temperature Ranges									
Specified Temperature Range	T _A	-40	_	+125	°C				
Operating Temperature Range	T _A	-40	_	+125	°C	(Note 1)			
Storage Temperature Range	T _A	-65		+150	°C				
Thermal Package Resistances									
Thermal Resistance, 8L-SOIC	θ_{JA}	—	150	_	°C/W				
Thermal Resistance, 8L-TDFN (2×3)	θ_{JA}	_	53	_	°C/W				

Note 1: Operation must not cause T_J to exceed the Absolute Maximum Junction Temperature specification (+150°C).

1.3 Timing Diagrams

FIGURE 1-3: Output Overdrive Recovery Timing Diagram.

1.4 DC Test Circuits

1.4.1 INPUT OFFSET TEST CIRCUIT

Figure 1-6 is used for testing the INA's input offset errors and input voltage range (V_E , V_{IVL} and V_{IVH} ; see Section 1.5.1 "Input Offset Related Errors" and Section 1.5.2 "Input Offset Common Mode Nonlinearity"). U₂ is part of a control loop that forces V_{OUT} to equal V_{CNT} ; U₁ can be set to any bias point.

FIGURE 1-6: Test Circuit for Common Mode (Input Offset).

When MCP6N11 is in its normal range of operation, the DC output voltages are (where V_E is the sum of input offset errors and g_E is the gain error):

EQUATION 1-1:

$$\begin{split} G_{DM} &= 1 + R_F \slash R_G \\ V_{OUT} &= V_{CNT} \\ V_M &= V_{REF} + G_{DM} (1 + g_E) V_E \end{split}$$

Table 1-5 gives the recommended ${\sf R}_{\sf F}$ and ${\sf R}_{\sf G}$ values for different ${\sf G}_{\sf MIN}$ options.

TABLE 1-5: SELECTING R _F AND R

G _{MIN} (V/V) Nom.	R _F (Ω) Nom.	R _G (Ω) Nom.	G _{DM} (V/V) Nom.	G _{DM} V _{OS} (±V) Max.	BW (kHz) Nom.
1	100k	499	201.4	0.60	2.5
2				0.40	5.0
5	100k	100	1001	0.85	2.5
10				0.50	5.0
100				0.35	35

1.4.2 DIFFERENTIAL GAIN TEST CIRCUIT

Figure 1-7 is used for testing the INA's differential gain error, non-linearity and input voltage range (g_E, INL_{DM}, V_{DML} and V_{DMH}; see Section 1.5.3 "Differential Gain Error and Non-linearity"). R_F and R_G are 0.01% for accurate gain error measurements.

FIGURE 1-7: Test Circuit for Differential Mode.

The output voltages are (where V_E is the sum of input offset errors and g_E is the gain error):

EQUATION 1-2:

$$\begin{split} G_{DM} &= l + R_F / R_G \\ V_{OUT} &= V_{REF} + G_{DM} (l + g_E) (V_{DM} + V_E) \\ V_M &= V_{OUT} - V_{REF} \\ &= G_{DM} (l + g_E) (V_{DM} + V_E) \end{split}$$

To keep V_{REF} , V_{FG} and V_{OUT} within their ranges, set:

EQUATION 1-3:

$$V_{REF} = (V_{DD} - G_{DM} V_{DM})/2$$

Table 1-6 shows the recommended R_F and R_G. They produce a 10 k Ω load; V_L can usually be left open.

TABLE 1-6:	SELECTING R _F AND R _G
------------	---

			-
G _{MIN} (V/V) Nom.	R _F (Ω) Nom.	R _G (Ω) Nom.	G _{DM} (V/V) Nom.
1	0	Open	1.000
2	4.99k	4.99k	2.000
5	8.06k	2.00k	5.030
10	9.09k	1.00k	10.09
100	10.0k	100	101.0

1.5 Explanation of DC Error Specs

1.5.1 INPUT OFFSET RELATED ERRORS

The input offset error (V_E) is extracted from input offset measurements (see Section 1.4.1 "Input Offset Test Circuit"), based on Equation 1-1:

EQUATION 1-4:

$$V_E = \frac{V_M - V_{REF}}{G_{DM}(1 + g_E)}$$

 V_E has several terms, which assume a linear response to changes in $V_{DD}, V_{SS}, V_{CM}, V_{OUT}$ and T_A (all of which are in their specified ranges):

EQUATION 1-5:

$$\begin{split} V_E \ = \ V_{OS} + \frac{\varDelta V_{DD} - \varDelta V_{SS}}{PSRR} + \frac{\varDelta V_{CM}}{CMRR} + \frac{\varDelta V_{REF}}{CMRR} \\ + \frac{\varDelta V_{OUT}}{A_{OL}} + \varDelta T_A \cdot \frac{\varDelta V_{OS}}{\varDelta T_A} \end{split}$$

Where:

PSRR, CMRR and A_{OL} are in units of V/V

 $\varDelta T_A$ is in units of °C

 $V_{DM} = 0$

Equation 1-2 shows how V_E affects V_{OUT}.

1.5.2 INPUT OFFSET COMMON MODE NON-LINEARITY

The input offset error (V_E) changes non-linearly with V_{CM}. Figure 1-8 shows V_E vs. V_{CM}, as well as a linear fit line (V_{E_LIN}) based on V_{OS} and CMRR. The op amp is in standard conditions (Δ V_{OUT} = 0, V_{DM} = 0, etc.). V_{CM} is swept from V_{IVL} to V_{IVH}. The test circuit is in **Section 1.4.1 "Input Offset Test Circuit"** and V_E is calculated using Equation 1-4.

FIGURE 1-8: Input Offset Error vs. Common Mode Input Voltage.

Based on the measured V_{E} data, we obtain the following linear fit:

EQUATION 1-6:

$$V_{E_{-LIN}} = V_{OS} + \frac{V_{CM} - V_{DD}/2}{CMRR}$$

Where:
$$V_{OS} = V_{2}$$
$$\frac{I}{CMRR} = \frac{V_{3} - V_{I}}{V_{IVH} - V_{IVL}}$$

The remaining error (ΔV_{E}) is described by the Common Mode Non-Linearity spec:

EQUATION 1-7:

$$INL_{CM} = \frac{max|\Delta V_E|}{V_{IVH} - V_{IVL}}$$

Where:
$$\Delta V_E = V_E - V_{E_LIN}$$

The same common mode behavior applies to V_{E} when V_{REF} is swept, instead of $V_{\text{CM}},$ since both input stages are designed the same:

EQUATION 1-8:

$$V_{E_LIN} = V_{OS} + \frac{V_{REF} - V_{DD}/2}{CMRR}$$
$$INL_{CM} = \frac{max|\Delta V_E|}{V_{IVH} - V_{IVL}}$$

1.5.3 DIFFERENTIAL GAIN ERROR AND NON-LINEARITY

The differential errors are extracted from differential gain measurements (see Section 1.4.2 "Differential Gain Test Circuit"), based on Equation 1-2. These errors are the differential gain error (g_E) and the input offset error (V_E , which changes non-linearly with V_{DM}):

EQUATION 1-9:

$$\begin{split} G_{DM} &= l + R_F / R_G \\ V_M &= G_{DM} (l + g_E) (V_{DM} + V_E) \end{split}$$

These errors are adjusted for the expected output, then referred back to the input, giving the differential input error (V_{ED}) as a function of V_{DM} :

EQUATION 1-10:

$$V_{ED} = \frac{V_M}{G_{DM}} - V_{DM}$$

Figure 1-9 shows V_{ED} vs. V_{DM}, as well as a linear fit line (V_{ED_LIN}) based on V_E and g_E. The op amp is in standard conditions (Δ V_{OUT} = 0, etc.). V_{DM} is swept from V_{DML} to V_{DMH}.

FIGURE 1-9: Differential Input Error vs. Differential Input Voltage.

Based on the measured $V_{\mbox{ED}}$ data, we obtain the following linear fit:

EQUATION 1-11:

$$V_{ED_LIN} = (I + g_E)V_E + g_E V_{DM}$$

Where:
$$g_E = \frac{V_3 - V_I}{V_{DMH} - V_{DML}} - I$$
$$V_E = \frac{V_2}{I + g_E}$$

Note that the V_E value measured here is not as accurate as the one obtained in Section 1.5.1 "Input Offset Related Errors".

The remaining error (ΔV_{ED}) is described by the Differential Mode Non-Linearity spec:

EQUATION 1-12:

$$INL_{DM} = \frac{max|\Delta V_{ED}|}{V_{DMH} - V_{DML}}$$

Where:
$$\Delta V_{ED} = V_{ED} - V_{ED_LIN}$$

MCP6N11

NOTES:

2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

Note: Unless otherwise indicated, T_A = +25°C, V_{DD} = 1.8V to 5.5V, V_{SS} = GND, EN/CAL = V_{DD}, V_{CM} = V_{DD}/2, V_{DM} = 0V, $V_{REF} = V_{DD}/2$, $V_L = V_{DD}/2$, $R_L = 10 \text{ k}\Omega$ to V_L , $C_L = 60 \text{ pF}$ and $G_{DM} = G_{MIN}$; see Figure 1-6 and Figure 1-7.

DC Voltages and Currents

2.1

FIGURE 2-1: Normalized Input Offset Voltage, with $G_{MIN} = 1$ to 10.

Voltage, with $G_{MIN} = 100$.

FIGURE 2-3: Normalized Input Offset Voltage Drift, with $G_{MIN} = 1$ to 10.

FIGURE 2-4: Normalized Input Offset Voltage Drift, with $G_{MIN} = 100$.

FIGURE 2-5:Normalized Input OffsetVoltage vs. Power Supply Voltage, with $V_{CM} = 0V$ and $G_{MIN} = 1$ to 10.

FIGURE 2-6: Normalized Input Offset Voltage vs. Power Supply Voltage, with $V_{CM} = 0V$ and $G_{MIN} = 100$.

FIGURE 2-7:Normalized Input OffsetVoltage vs. Power Supply Voltage, with $V_{CM} = V_{DD}$ and $G_{MIN} = 1$ to 10.

FIGURE 2-8:Normalized Input OffsetVoltage vs. Power Supply Voltage, with $V_{CM} = V_{DD}$ and $G_{MIN} = 100$.

FIGURE 2-10:Normalized Input OffsetVoltage vs. Output Voltage, with $G_{MIN} = 100$.

Note: Unless otherwise indicated, $T_A = +25^{\circ}$ C, $V_{DD} = 1.8$ V to 5.5V, $V_{SS} =$ GND, EN/ $\overline{CAL} = V_{DD}$, $V_{CM} = V_{DD}/2$, $V_{DM} = 0$ V, $V_{REF} = V_{DD}/2$, $V_L = V_{DD}/2$, $R_L = 10 \text{ k}\Omega$ to V_L , $C_L = 60 \text{ pF}$ and $G_{DM} = G_{MIN}$; see Figure 1-6 and Figure 1-7.

FIGURE 2-11: Input Common Mode Voltage Headroom vs. Ambient Temperature.

FIGURE 2-12: Normalized Input Offset Voltage vs. Common Mode Voltage, with $V_{DD} = 1.8V$ and $G_{MIN} = 1$ to 10.

FIGURE 2-13: Normalized Input Offset Voltage vs. Common Mode Voltage, with $V_{DD} = 1.8V$ and $G_{MIN} = 100$.

FIGURE 2-14: Normalized Input Offset Voltage vs. Common Mode Voltage, with $V_{DD} = 5.5V$ and $G_{MIN} = 1$ to 10.

FIGURE 2-15: Normalized Input Offset Voltage vs. Common Mode Voltage, with $V_{DD} = 5.5V$ and $G_{MIN} = 100$.

FIGURE 2-16: Normalized CMRR and PSRR vs. Ambient Temperature.

FIGURE 2-17: Normalized DC Open-Loop Gain vs. Ambient Temperature.

FIGURE 2-18: The MCP6N11 Shows No Phase Reversal vs. Common Mode Voltage.

FIGURE 2-19: Normalized Differential Mode Voltage Range vs. Ambient Temperature.

FIGURE 2-20: Normalized Differential Input Error vs. Differential Voltage, with $G_{MIN} = 1$.

FIGURE 2-21: Normalized Differential Input Error vs. Differential Voltage, with $G_{MIN} = 2$ to 100.

FIGURE 2-22: The MCP6N11 Shows No Phase Reversal vs. Differential Voltage, with $V_{DD} = 5.5V$.

Note: Unless otherwise indicated, $T_A = +25^{\circ}$ C, $V_{DD} = 1.8$ V to 5.5V, $V_{SS} = GND$, $EN/\overline{CAL} = V_{DD}$, $V_{CM} = V_{DD}/2$, $V_{DM} = 0$ V, $V_{REF} = V_{DD}/2$, $V_L = V_{DD}/2$, $R_L = 10 \text{ k}\Omega$ to V_L , $C_L = 60 \text{ pF}$ and $G_{DM} = G_{MIN}$; see Figure 1-6 and Figure 1-7.

FIGURE 2-24: Input Bias Current vs. Input Voltage (below V_{SS}).

FIGURE 2-25: Input Bias and Offset Currents vs. Common Mode Input Voltage, with $T_A = +85^{\circ}C$.

FIGURE 2-26: Input Bias and Offset Currents vs. Common Mode Input Voltage, with $T_A = +125$ °C.

FIGURE 2-27: Output Voltage Headroom vs. Output Current.

FIGURE 2-28: Output Voltage Headroom vs. Ambient Temperature.

FIGURE 2-29: Output Short Circuit Current vs. Power Supply Voltage.

FIGURE 2-30: Supply Current vs. Power Supply Voltage.

FIGURE 2-31: Supply Current vs. Common Mode Input Voltage.

2.2 Frequency Response

FIGURE 2-34: Normalized Open-Loop Gain vs. Frequency.

FIGURE 2-35: Normalized Gain Bandwidth Product and Phase Margin vs. Ambient Temperature.

FIGURE 2-36: Closed-Loop Output Impedance vs. Frequency.

Normalized Capacitive Load.

MCP6N11

Note: Unless otherwise indicated, $T_A = +25^{\circ}$ C, $V_{DD} = 1.8$ V to 5.5V, $V_{SS} =$ GND, EN/ $\overline{CAL} = V_{DD}$, $V_{CM} = V_{DD}/2$, $V_{DM} = 0$ V, $V_{REF} = V_{DD}/2$, $V_L = V_{DD}/2$, $R_L = 10 \text{ k}\Omega$ to V_L , $C_L = 60 \text{ pF}$ and $G_{DM} = G_{MIN}$; see Figure 1-6 and Figure 1-7.

2.3 Noise

FIGURE 2-38: Normalized Input Noise Voltage Density vs. Frequency.

FIGURE 2-39: Normalized Input Noise Voltage Density vs. Input Common Mode Voltage, with f = 100 Hz.

FIGURE 2-40: Normalized Input Noise Voltage Density vs. Input Common Mode Voltage, with f = 10 kHz.

FIGURE 2-41: Normalized Input Noise Voltage vs. Time, with $G_{MIN} = 1$ to 10.

FIGURE 2-42: Normalized Input Noise Voltage vs. Time, with $G_{MIN} = 100$.

2.4 Time Response

Temperature.

FIGURE 2-46: Maximum Output Voltage Swing vs. Frequency.

FIGURE 2-47: Common Mode Input Overdrive Recovery Time vs. Normalized Gain.

FIGURE 2-48: Differential Input Overdrive Recovery Time vs. Normalized Gain.

FIGURE 2-49: Output Overdrive Recovery Time vs. Normalized Gain.

FIGURE 2-50:The MCP6N11 Shows NoPhase Reversal vs. Common Mode InputOverdrive, with $V_{DD} = 5.5V$.

FIGURE 2-51: The MCP6N11 Shows No Phase Reversal vs. Differential Input Overdrive, with $V_{DD} = 5.5V$.

2.5 Enable/Calibration and POR Responses

FIGURE 2-52: EN/CAL and Output Voltage vs. Time, with $V_{DD} = 1.8V$.

FIGURE 2-53: EN/CAL and Output Voltage vs. Time, with $V_{DD} = 5.5V$

FIGURE 2-54: EN/CAL Hysteresis vs. *Ambient Temperature.*

FIGURE 2-55: EN/CAL Turn On Time vs. Ambient Temperature.

FIGURE 2-56: Power Supply On and Off and Output Voltage vs. Time.

FIGURE 2-57: POR Trip Voltages and Hysteresis vs. Temperature.

Shutdown vs. Power Supply Voltage.

Output Voltage.

le.

3.0 PIN DESCRIPTIONS

Descriptions of the pins are listed in Table 3-1.

MCP6N11		Symbol	Description
SOIC	TDFN	Symbol	Description
1	1	V _{FG}	Feedback Input
2	2	V _{IM}	Inverting Input
3	3	V _{IP}	Non-inverting Input
4	4	V _{SS}	Negative Power Supply
5	5	V _{REF}	Reference Input
6	6	V _{OUT}	Output
7	7	V _{DD}	Positive Power Supply
8	8	EN/CAL	Enable/V _{OS} Calibrate Digital Input
_	9	EP	Exposed Thermal Pad (EP); must be connected to V _{SS}

TABLE 3-1:PIN FUNCTION TABLE

3.1 Analog Signal Inputs

The non-inverting and inverting inputs (V_{IP}, and V_{IM}) are high-impedance CMOS inputs with low bias currents.

3.2 Analog Feedback Input

The analog feedback input (V_{FG}) is the inverting input of the second input stage. The external feedback components (R_F and R_G) are connected to this pin. It is a high-impedance CMOS input with low bias current.

3.3 Analog Reference Input

The analog reference input (V_{REF}) is the non-inverting input of the second input stage; it shifts V_{OUT} to its desired range. The external gain resistor (R_G) is connected to this pin. It is a high-impedance CMOS input with low bias current.

3.4 Analog Output

The analog output (V_{OUT}) is a low-impedance voltage output. It represents the differential input voltage (V_{DM} = V_{IP} - V_{IM}), with gain G_{DM} and is shifted by V_{REF}. The external feedback resistor (R_F) is connected to this pin.

3.5 Power Supply Pins

The positive power supply (V_{DD}) is 1.8V to 5.5V higher than the negative power supply (V_{SS}). For normal operation, the other pins are between V_{SS} and V_{DD} .

Typically, these parts are used in a single (positive) supply configuration. In this case, V_{SS} is connected to ground and V_{DD} is connected to the supply; V_{DD} will need bypass capacitors.

3.6 Digital Enable and V_{OS} Calibration Input

This input (EN/ \overline{CAL}) is a CMOS, Schmitt-triggered input that controls the active, low power and V_{OS} calibration modes of operation. When this pin goes low, the part is placed into a low power mode and the output is high-Z. When this pin goes high, the amplifier's input offset voltage is corrected by the calibration circuitry, then the output is re-connected to the V_{OUT} pin, which becomes low impedance, and the part resumes normal operation.

3.7 Exposed Thermal Pad (EP)

There is an internal connection between the Exposed Thermal Pad (EP) and the V_{SS} pin; they must be connected to the same potential on the Printed Circuit Board (PCB).

This pad can be connected to a PCB ground plane to provide a larger heat sink. This improves the package thermal resistance (θ_{JA}).