: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Panasonic ideas for life

RoHS Directive compatibility information http://www.nais-e.com/

FEATURES

1. High frequency characteristics (Impedance 50Ω)

Frequency (GHz)	to 1	1 to 4	4 to 8	8 to 12.4	12.4 to 18	18 to 26.5^{\star}
V.S.W.R. (max.)	1.1	1.15	1.25	1.35	1.5	1.7
Insertion loss (dB. max.)	0.2		0.3	0.4	0.5	0.8
Isolation (dB. min.)	85	80	70	65	60	55

* 18 to 26.5 GHz characteristics can be applied 26.5 GHz type only (SPDT, Transfer)

2. SPDT, Transfer and SP6T type is

 available3. High sensitivity

Nominal operating power:
840 mW (SPDT/SP6T, Failsafe type)
$1,540 \mathrm{~mW}$ (Transfer, Failsafe type)
4. Long life: $\mathbf{5 \times 1 0 6}$
5. With termination type is available
(SP6T)
6. + COM type is available

TYPICAL APPLICATIONS

Wireless and mobile communication

- Cellular phone base stations
- Amplifier switching

Digital broadcasting

- Broadcasting relay station
- Broadcasting equipment

Measurement instruments

- All types of inspection equipment

SPECIFICATIONS

Contact

Arrangement		SPDT			Transfer		
Contact material		Gold					
Initial contact resistance (By voltage drop 6V DC 1A)		Max. $100 \mathrm{~m} \Omega$					
Rating	Contact input power*1	120W 3GHz (V.S.W.R. 1.15 or less, no contact switching, ambient temperature $40^{\circ} \mathrm{C}$ [SPDT], $25^{\circ} \mathrm{C}$ [Transfer], $25^{\circ} \mathrm{C}$ [SP6T])*1					
Indicator rating	Contact rating	Max. 30V 100mA					
	Initial contact resistance (Measured by 5V 100mA)	Max. 1Ω					
High frequency characteristics (Impedance 50 ${ }^{\text {) }}$		to 1 GHz	1 to 4	4 to 8	8 to 12.4	12.4 to 18	18 to $26.5{ }^{\text {\#2 }}$
	V.S.W.R. (max.)	1.1	1.15	1.25	1.35	1.5	1.7
	Insertion loss (dB, max.)	0.2		0.3	0.4	0.5	0.8
	Isolation (dB, min.)	85	80	70	65	60	55
Expected life (min. operation)	Mechanical (at 180 cpm)	5×10^{6}					
	Electrical (at 20 cpm)	$5 \times 10^{6}(5 \mathrm{~W}$, to 3 GHz , impedance 50Ω, V.S.W.R.; max. 1.2)					

Arrangement		SP6T			
Contact material		Gold			
Initial contact resistance (By voltage drop 6V DC 1A)		Max. $100 \mathrm{~m} \Omega$			
Rating	Contact input power*1	120W 3GHz (V.S.W.R. 1.15 or less, no contact switching, ambient temperature $40^{\circ} \mathrm{C}$ [SPDT], $25^{\circ} \mathrm{C}$ [Transfer], $25^{\circ} \mathrm{C}$ [SP6T]) ${ }^{\# 1}$			
Indicator rating	Contact rating	Max. 30V 100mA			
	Initial contact resistance (Measured by 5V 100 mA)	Max. 1Ω			
High frequency characteristics (Impedance 50 ${ }^{\text {) }}$		to 1 GHz	1 to 4	4 to 8	8 to 13
	V.S.W.R. (max.)	1.1	1.15	1.25	1.35
	Insertion loss (dB, max.)	0.2		0.3	0.4
	Isolation (dB, min.)	85	80	70	65
Expected life (min. operation)	Mechanical (at 180 cpm)	5×10^{6}			
	Electrical (at 20 cpm)	5×10^{6} (5 W , to 3GHz, impedance 50Ω, V.S.W.R.; max. 1.2)			

\#1 Factors such as heating of the connected connector influence the high frequency characteristics; therefore, please verify under actual conditions of use.
\#2 18 to 26.5 GHz characteristics apply to the 26.5 GHz type only.

Characteristics

Remarks

${ }^{*}$ Please verify the usability of input power under actual conditions because heat generated from connectors can influence connection.
*2 Measurement at same location as "Initial breakdown voltage" section.
${ }^{*} 3$ Detection current: 10 mA
${ }^{*}$ Nominal operating voltage applied to the coil, excluding contact bounce time.
${ }^{{ }^{5}}$ Half-wave pulse of sine wave: 11 ms , detection time: 10 ms .
${ }^{*} 6$ Half-wave pulse of sine wave: 11 ms
${ }^{* 7}$ Detection time: 10 ms
${ }^{*}$ Refer to 4. Conditions for operation, transport and storage conditions in NOTES (Page 42).

ORDERING INFORMATION

Product name	Frequency	Operating function	Nominal operating voltage, V DC	Operation terminal	HF data attached
RD	1: to 18 GHz (SPDT) 2: to 18 GHz (Transfer) 3: to 13 GHz (SP6T) 5: to 26.5 GHz (SPDT) 6: to 26.5 GHz (Transfer)	00: Failsafe 20: Latching 51: Latching with TTL driver (with self cut-off function) (SPDT, Transfer)	4H: 4.5 (Failsafe, Latching type only) 05: 5 (Latching with TTL driver type only) 12: 12 24: 24	Nil: Solder terminal C: Connector cable (SPDT type only)	Nil: No HF test data attached Q: HF test data attached

Note: Sealed types are also available. (SPDT type only)

RD (ARD)

TYPES

1. SPDT

1) Solder terminal

Operating function	$\begin{array}{c}\text { Nominal operating } \\ \text { voltage, V DC }\end{array}$	$\begin{array}{c}\text { No HF datasheet } \\ \text { attached }\end{array}$		$\begin{array}{c}\text { HF datasheet } \\ \text { attached }\end{array}$	$\begin{array}{c}\text { No HF datasheet } \\ \text { attached }\end{array}$
		ARD1004H	ARD1004HQ	ARD5004H	ARD5004HQ
					$]$

Note: Standard packing; Carton: 1 pc. Case: 20 pcs.
2) Connector cable

Operating function	Nominal operating voltage, V DC	18GHz type		26.5 GHz type	
		No HF datasheet attached	HF datasheet attached	No HF datasheet attached	HF datasheet attached
Failsafe	4.5	ARD1004HC	ARD1004HCQ	ARD5004HC	ARD5004HCQ
	12	ARD10012C	ARD10012CQ	ARD50012C	ARD50012CQ
	24	ARD10024C	ARD10024CQ	ARD50024C	ARD50024CQ
Latching	4.5	ARD1204HC	ARD1204HCQ	ARD5204HC	ARD5204HCQ
	12	ARD12012C	ARD12012CQ	ARD52012C	ARD52012CQ
	24	ARD12024C	ARD12024CQ	ARD52024C	ARD52024CQ
Latching with TTL driver (with self cut-off function)	5	ARD15105C	ARD15105CQ	ARD55105C	ARD55105CQ
	12	ARD15112C	ARD15112CQ	ARD55112C	ARD55112CQ
	24	ARD15124C	ARD15124CQ	ARD55124C	ARD55124CQ

Note: Standard packing; Carton: 1 pc. Case: 10 pcs.

2. Transfer

1) Solder terminal

Operating function	$\begin{array}{c}\text { Nominal operating } \\ \text { voltage, V DC }\end{array}$	$\begin{array}{c}\text { No HF datasheet } \\ \text { attached }\end{array}$		$\begin{array}{c}\text { HF datasheet } \\ \text { attached }\end{array}$	$\begin{array}{c}\text { No HF datasheet } \\ \text { attached }\end{array}$
		ARD2004H	ARD2004HQ	ARD6004H	ARD datasheet
					$]$

Note: Standard packing; Carton: 1 pc. Case: 10 pcs.

3. SP6T

Operating function	Nominal operating voltage, V DC	13GHz type	
		No HF datasheet attached	HF datasheet attached
Failsafe	4.5	ARD3004H	ARD3004HQ
	12	ARD30012	ARD30012Q
	24	ARD30024	ARD30024Q
Latching	4.5	ARD3204H	ARD3204HQ
	12	ARD32012	ARD32012Q
	24	ARD32024	ARD32024Q

Note: Standard packing; Carton: 1 pc. Case: 5 pcs.

COIL DATA (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)

1. SPDT

1) Failsafe type

Nominal operating voltage, V DC	Nominal operating current, mA $(+10 \% /-15 \%)$	Nominal power consumption, mW
4.5	186.7	840
12	70.0	840
24	40.4	970
2$)$ Latching type	Nominal operating current, mA $(+10 \% /-15 \%)$	Nominal power consumption, mW Nominal operating voltage, V DC
4.5	155.6	700
12	62.5	750
24	37.5	900

3) Latching with TTL driver type (with self cut-off function)

Nominal operating voltage, V DC	TTL logic level (see TTL logic level range)		Switching frequency
	ON	OFF	
12	2.4 to 5.5 V	0 to 0.5 V	(ON time $:$ OFF time $=1: 1$)
24			

2. Transfer

1) Failsafe type
\(\left.$$
\begin{array}{c|c|c}\hline \begin{array}{c}\text { Nominal operating voltage, } \\
\text { V DC }\end{array}
$$ \& \begin{array}{c}Nominal operating current, mA

(+10 \% /-15 \%)\end{array} \& Nominal power consumption, \mathrm{mW}\end{array}\right]\)| 1540 | | |
| :---: | :---: | :---: |
| 4.5 | 342.2 | 1540 |
| 12 | 128.3 | 1670 |
| 24 | 69.6 | |

2) Latching type

Nominal operating voltage, V DC	Nominal operating current, mA $(+10 \% /-15 \%)$	Nominal power consumption, mW
4.5	266.7	1200
12	104.2	1250
24	58.3	1400

3) Latching with TTL driver type (with self cut-off function)

Nominal operating voltage, V DC	TTL logic level (see TTL logic level range)		Switching frequency
	ON	OFF	
5	2.4 to 5.5 V	0 to 0.5 V	(ON time $:$ OFF time $=1: 1$)
12			
24			

3. SP6T

1) Failsafe type

Nominal operating voltage, V DC	Nominal operating current, mA $(+10 \% /-15 \%)$	Nominal power consumption, mW
4.5	186.7	840
12	70.0	840
24	40.4	970

2) Latching type

Nominal operating voltage, V DC	Nominal operating current, mA $(+10 \% /-15 \%)$	Nominal power consumption, mW
4.5	SET: $155.6 /$ RESET (ALL): 933.6	SET: $700 /$ RESET (ALL): 4,200
12	SET: $62.5 /$ RESET (ALL): 375.0	SET: $750 / R E S E T$ (ALL): 4,500
24	SET: $37.5 /$ RESET (ALL): 225.0	SET: $900 / R E S E T$ (ALL): 5,400

- Operating voltage range

1) Failsafe type

2) Latching type

3) Latching with TTL driver type (with self cut-off function)

4) TTL Logic level range

Note) Please consult us for use that is outside this range.

1. SPDT

1) Solder terminal

Tolerance: $\pm 0.3 \pm .012$

* + COM type is available

	Indicator					Coil			
Pin No.	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Fail safe	-	NC	COM	NO	-	-	GND	+	-
Latching	-	1	COM	2	-	-	GND	1	2
Latching with TTL driver	-	1	COM	2	-	V	GND	Logic 1	Logic 2

Tolerance: $\pm 0.3 \pm .012$

Failsafe

Latching

Latching with TTL driver (with self cut-off function)

[^0]

Tolerance: $\pm 0.3 \pm .012$

Fail safe	NC: J1-J2, J3-J4 NO: $\mathrm{J} 1-\mathrm{J} 3, \mathrm{~J} 2-\mathrm{J} 4$
Latching	POS1: J1-J2, J3-J4 POS2: J1-J3, J2-J4
Latching with TTL driver	POS1: J1-J2, J3-J4 POS2: J1-J3, J2-J4

Failsafe

Latching

Coil terminal Indicator terminal

Latching with TTL driver (with self cut-off function)

Failsafe type

1. With termination type is available.
2. + COM type is available.

Latching type

REFERENCE DATA

1-(1). High frequency characteristics (SPDT)
Sample: ARD10012
Measuring method: Measured with HP network analyzer (HP8510).

- V.S.W.R.

- Insertion loss

- Isolation

1-(2). High frequency characteristics (Transfer)
Sample: ARD60012
Measuring method: Measured with HP network analyzer (HP8510).

- V.S.W.R.

- Insertion loss

- Isolation

1-(3). High frequency characteristics (SP6T)
Measuring method: Measured with HP network analyzer (HP8510).

- V.S.W.R.

- Insertion loss

- Isolation

NOTES

1. Coil operating power

Pure DC current should be applied to the coil. The wave form should be rectangular. If it includes ripple, the ripple factor should be less than 5%.
However, check it with the actual circuit since the characteristics may be slightly different. The nominal operating voltage should be applied to the coil for more than 50 ms to set/reset the latching type relay.
Please use the latching type for circuits that are continually powered for long periods of time.

2. Coil connection

When connecting coils, refer to the wiring diagram to prevent mis-operation or malfunction.

3. Connection of coil indicator and washing conditions

1) The connection of coil indicator terminal shall be done by soldering. Soldering conditions
Max. $260^{\circ} \mathrm{C} 500^{\circ} \mathrm{F}$ (solder temp) within 10 sec (soldering time)
Max. $350^{\circ} \mathrm{C} 662^{\circ} \mathrm{F}$ (solder temp) within 3 sec (soldering time)
2) This product is not sealed type, therefore washing is not allowed.
4. Conditions for operation, transport and storage conditions
1) Ambient temperature, humidity, and atmospheric pressure during usage, transport, and storage of the relay: (1) Temperature:
-55 to $+85^{\circ} \mathrm{C}-67$ to $+185^{\circ} \mathrm{F}$
(2) Humidity: 5 to 85% RH
(Avoid freezing and condensation.) The humidity range varies with the temperature. Use within the range indicated in the graph below.
(3) Atmospheric pressure: 86 to 106 kPa Temperature and humidity range for usage, transport, and storage:

2) Condensation

Condensation forms when there is a sudden change in temperature under high temperature and high humidity conditions. Condensation will cause deterioration of the relay insulation.
3) Freezing

Condensation or other moisture may freeze on the relay when the temperature is lower than $0^{\circ} \mathrm{C} 32^{\circ} \mathrm{F}$. This causes problems such as sticking of movable parts or operational time lags.
4) Low temperature, low humidity environments.
The plastic becomes brittle if the relay is exposed to a low temperature, low humidity environment for long periods of time.
5) Low-temperature and low-humidity atmosphere.
When exposed to low temperature and low humidity for a long time, the relay's plastic casing may become breakable.

5. Other handling precautions.

1) The relay's on/off service life is based on standard test conditions (temperature: 15 to $35^{\circ} \mathrm{C} 59$ to $95^{\circ} \mathrm{F}$, humidity: 25 to 75%) specified in JIS C5442-1996. Life will depend on many factors of your system: coil drive circuit, type of load, switching intervals, switching phase, ambient conditions, to name a few. 2) Use the relay within specifications such as coil rating, contact rating and on/ off service life. If used beyond limits, the relay may overheat, generate smoke or catch fire.
2) Be careful not to drop the relay. If accidentally dropped, carefully check its appearance and characteristics before use.
3) Be careful to wire the relay correctly. Otherwise, malfunction, overheat, fire or other trouble may occur.
4) The latching type relay is shipped in the reset position. But jolts during transport or impacts during installation can move it to the set position. It is, therefore, advisable to build a circuit in which the relay can be initialized (set and reset) just after turning on the power.
5) If a relay stays on in a circuit for many months or years at a time without being activated, circuit design should be reviewed so that the relay can remain non-excited. A coil that receives current all the time heats, which degrades insulation earlier than expected. A latching type relay is recommended for such circuits.
6) For SMA connectors, we recommend a torque of $0.90 \pm 0.1 \mathrm{~N} \cdot \mathrm{~m}$ for installation, which falls within the prescribed torque of MIL-C-39012. Please be aware that conditions might be different depending on the connector materials and how it interacts with surrounding materials.
7) Please do not use silicon based substances such as silicon rubber, silicon oil, silicon coatings and silicon fillings, in the vicinity of the relay. Doing so may cause volatile silicon gas to form which may lead to contact failure due to the adherence of silicon on the contacts when they open and close in this atmosphere.
8) Please note that when switching contacts (latching type only), you must apply reset (ALL) voltage and release all contacts first. (SP6T type)
9) Do not use multiple contacts simultaneously. (SP6T type)

[^0]: + COM type is available

