

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

ARF1505

300V

750W

40MHz

RF POWER MOSFET N-CHANNEL ENHANCEMENT MODE

The ARF1505 is an RF power transistor designed for off-line 300V operation in very high power scientific, commercial, medical and industrial RF power generator and amplifier applications up to 40 MHz.

• Specified 300 Volt, 27.12 MHz Characteristics:

Output Power = 750 Watts.

Gain = 17dB (Class C)

Efficiency > 75%

RoHS Compliant

- High Performance Power RF Package.
- Very High Breakdown for Improved Ruggedness.
- Low Thermal Resistance.
- Nitride Passivated Die for Improved Reliability.

MAXIMUM RATINGS

All Ratings: $T_C = 25^{\circ}C$ unless otherwise specified.

Symbol	Parameter	ARF1505	UNIT	
V _{DSS}	Drain-Source Voltage	1200	Volts	
I _D	Continuous Drain Current @ T _C = 25°C	25 A		
V _{GS}	Gate-Source Voltage	±30	Volts	
P_{D}	Total Device Dissipation @ T _C = 25°C	1500	Watts	
T_J , T_{STG}	Operating and Storage Junction Temperature Range	-55 to 175	°C	
T _L	Lead Temperature: 0.063" from Case for 10 Sec.	300		

STATIC ELECTRICAL CHARACTERISTICS

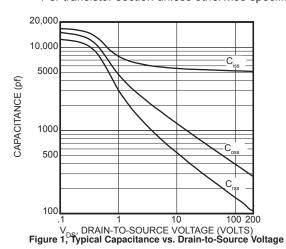
Symbol	Characteristic / Test Conditions	MIN	TYP	MAX	UNIT	
BV _{DSS}	Drain-Source Breakdown Voltage ($V_{GS} = 0V$, $I_D = 250 \mu A$)	1200			Volts	
V _{DS(ON)}	On State Drain Voltage (1) (I _{D(ON)} = 12.5A, V _{GS} = 10V)		8	9.5		
	Zero Gate Voltage Drain Current (V _{DS} = V _{DSS} , V _{GS} = 0V)			100		
DSS	Zero Gate Voltage Drain Current (V _{DS} = 0.8 V _{DSS} , V _{GS} = 0V, T _C = 125°C)			1000	μA	
I _{GSS}	Gate-Source Leakage Current $(V_{GS} = \pm 30V, V_{DS} = 0V)$			±400	nA	
g _{fs}	Forward Transconductance $(V_{DS} = 25V, I_{D} = 12.5A)$	5.5	6		mhos	
V _{isolation}	RMS Voltage (60Hz Sinewave from terminals to mounting surface for 1 minute)	TBD			Volts	
V _{GS(TH)}	Gate Threshold Voltage $(V_{DS} = V_{GS}, I_{D} = 50 \text{mA})$	3		5	Volts	

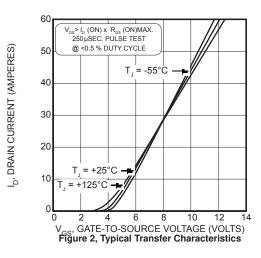
THERMAL CHARACTERISTICS

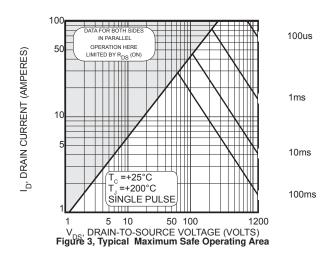
Symbol	Characteristic (per package unless otherwise noted)		TYP	MAX	UNIT
$R_{\theta JC}$	Junction to Case			0.10	°C/W
R _{0JHS}	Junction to Sink (Use High Efficiency Thermal Joint Compound and Planar Heat Sink Surface.)		0.16		C/VV

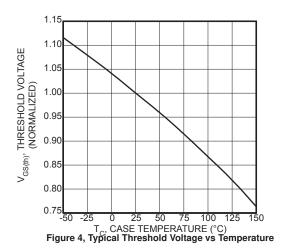
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.

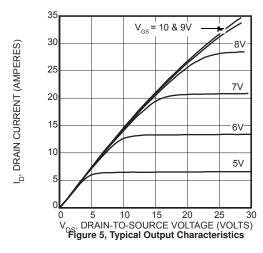
Symbol	Characteristic	Test Conditions	MIN	TYP	MAX	UNIT
C _{iss}	Input Capacitance	V _{GS} = 0V		5400	6500	
C _{oss}	Output Capacitance	V _{DS} = 200V		300	400	pF
C _{rss}	Reverse Transfer Capacitance	f = 1 MHz		125	160	
t _{d(on)}	Turn-on Delay Time	V _{GS} = 15V		8		
t _r	Rise Time	$V_{DD} = 0.5 V_{DSS}$		5		ns
t _{d(off)}	Turn-off Delay Time	I _D = I _{D[Cont.]} @ 25°C		25		110
t _f	Fall Time	$R_{G} = 1.6\Omega$		13		

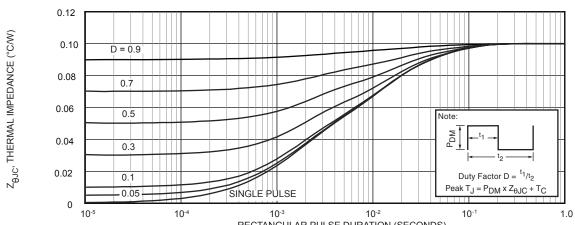

FUNCTIONAL CHARACTERISTICS


Symbol	Characteristic	Test Conditions	MIN	TYP	MAX	UNIT	
G _{PS}	Common Source Amplifier Power Gain	f = 27.12 MHz	15	17		dB	
η	Drain Efficiency	$V_{GS} = 0V$ $V_{DD} = 300V$	70	75		%	
Ψ	Electrical Ruggedness VSWR 10:1	P _{out} = 750W	No Deg	o Degradation in Output Power			


 $^{^{\}bigodot}$ Pulse Test: Pulse width < 380 $\mu\text{S},$ Duty Cycle < 2%.

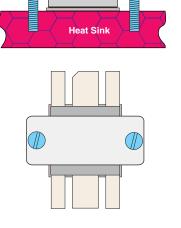

Microsemi reserves the right to change, without notice, the specifications and information contained herein.


Per transistor section unless otherwise specified.

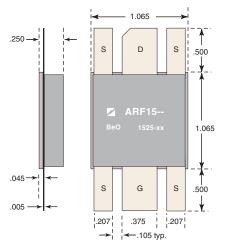


RECTANGULAR PULSE DURATION (SECONDS)
Figure 6, Maximum Effective Transient Thermal Impedance, Junction-to-Case vs. Pulse Duration

TYPICAL LARGE SIGNAL INPUT - OUPUT IMPEDANCE CHARACTERISTICS

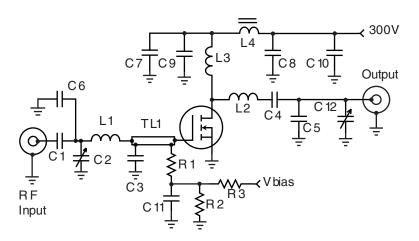

F (MHz)	Z _{in} (Ω)	$Z_{OL}\left(\Omega\right)$
2.0	5.4 - j 9.6	46 - j 10.5
13.5	0.30 - j 1.2	16.4 - j 23
27	0.26 + j .58	4.9 - j 14.6
40	0.36 + j 1.6	2.3 - j 10.3

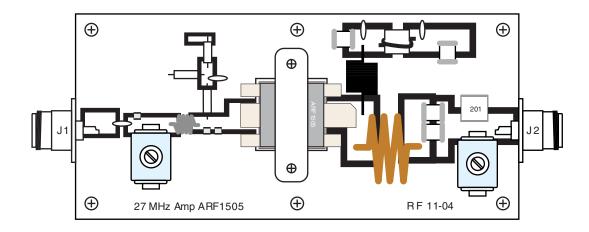
 Z_{in} - Gate shunted with 25Ω Z_{OL} - Conjugate of optimum load for 750 Watts output I_{DQ} = 100mA V_{dd} = 300V

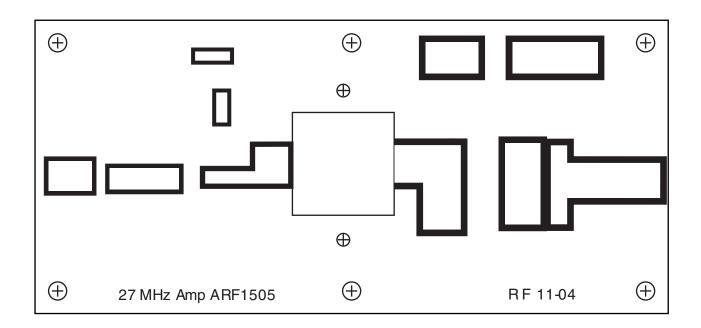

Thermal Considerations and Package Mounting:

The rated 1500W power dissipation is only available when the package mounting surface is at 25°C and the junction temperature is 175°C. The thermal resistance between junctions and case mounting surface is 0.10°C/W. When installed, an additional thermal impedance of 0.06°C/W between the package base and the mounting surface is smooth and flat. Thermal joint compound must be used to reduce the effects of small surface irregularities. The heatsink should incorporate a copper heat spreader to obtain best results.

The package is designed to be clamped to a heatsink. A clamped joint maintains the required mounting pressure while allowing for thermal expansion of both the device and the heat sink. A simple clamp, and two 6-32 (M3.5) screws can provide the minimum 125 lb. required mounting force. T=4-6 in-lb. Please refer to App Note 1802 "Mounting Instructions for Flangeless Packages."




HAZARDOUS MATERIAL WARNING


The ceramic portion of the device between leads and mounting surface is beryllium oxide, BeO. Beryllium oxide dust is toxic when inhaled. Care must be taken during handling and mounting to avoid damage to this area These devices must never be thrown away with general industrial or domestic waste.

ARF1505 -- 27.12 MHz Test Circuit

C1, C7, C8, C11 .047mF 500V cerami disc C2, C12 Arco 465 75-380pF mica trimmer C3 2x 4700pF ATC 700B C4, C9-C10 8200pF 500V NPO ceramic C5 200pF ATC 100E C6 150pF ATC 700B L1 90nH 4t # 18 0.25"d .25"l L2 200nH - 3t # 8 1" dia 1"l L3 6 μ H - 22t # 24 enam 0.5"dia L4 500nH 2t on 850 μ .5" bead R1-R3 1K Ω 1/4W TL1 .112" x 1" (50 Ω) Stripline

