: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

RF POWER MOSFETs N-CHANNEL ENHANCEMENT MODE

ARF448A ARF448B

Common Source

150V 140W 65MHz

The ARF448A and ARF448B comprise a symmetric pair of common source RF power transistors designed for pushpull scientific, commercial, medical and industrial RF power amplifier applications up to 65 MHz .

```
- Specified 150 Volt, 40.68 MHz Characteristics:
```

Output Power = 140 Watts.
Gain = 15dB (Class C)
Efficiency $=75 \%$

- Low Cost Common Source RF Package.
- Very High Breakdown for Improved Ruggedness.
- Low Thermal Resistance.
- Nitride Passivated Die for Improved Reliability.

MAXIMUM RATINGS

Symbol	Parameter	ARF448A/448B	UNIT
$\mathrm{V}_{\text {DSS }}$	Drain-Source Voltage	450	Volts
$\mathrm{V}_{\text {DGO }}$	Drain-Gate Voltage	450	
ID	Continuous Drain Current @ $\mathrm{C}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	15	Amps
V_{GS}	Gate-Source Voltage	± 30	Volts
P_{D}	Total Power Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	230	Watts
$\mathrm{R}_{\text {өJC }}$	Junction to Case	0.55	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{T}_{\mathrm{J},} \mathrm{T}_{\text {STG }}$	Operating and Storage Junction Temperature Range	-55 to 150	${ }^{\circ} \mathrm{C}$
T ${ }_{\text {L }}$	Lead Temperature: 0.063 " from Case for 10 Sec.	300	

STATIC ELECTRICAL CHARACTERISTICS

Symbol	Characteristic / Test Conditions	MIN	TYP	MAX	UNIT
$\mathrm{BV}_{\text {DSS }}$	Drain-Source Breakdown Voltage ($\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$)	450			
$\mathrm{V}_{\mathrm{DS}}(\mathrm{ON})$	On State Drain Voltage ${ }^{(1)}\left(\mathrm{I}_{\mathrm{D}}(\mathrm{ON})=7.5 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}\right)$			3	s
$\mathrm{I}_{\text {DSS }}$	Zero Gate Voltage Drain Current ($\left.\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{DSS}}, \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}\right)$			25	$\mu \mathrm{A}$
	Zero Gate Voltage Drain Current ($\left.\mathrm{V}_{\mathrm{DS}}=0.8 \mathrm{~V}_{\mathrm{DSS}}, \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C}\right)$			250	
$\mathrm{I}_{\text {GSS }}$	Gate-Source Leakage Current ($\left.\mathrm{V}_{\mathrm{GS}}= \pm 30 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}\right)$			± 100	nA
g_{fs}	Forward Transconductance ($\left.\mathrm{V}_{\mathrm{DS}}=25 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=7.5 \mathrm{~A}\right)$	5	8.5		mhos
$\mathrm{V}_{\mathrm{GS}}(\mathrm{TH})$	Gate Threshold Voltage ($\left.\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}=50 \mathrm{~mA}\right)$	2		5	Volts

[^0]APT Website - http://www.advancedpower.com

ARF448A/448B

Symbol	Characteristic	Test Conditions	MIN	TYP	MAX	UNIT
$\mathrm{C}_{\text {iss }}$	Input Capacitance	$\begin{gathered} V_{G S}=0 V \\ V_{D S}=150 V \\ f=1 \mathrm{MHz} \end{gathered}$		1400	1700	pF
$\mathrm{C}_{\text {oss }}$	Output Capacitance			150	200	
$\mathrm{C}_{\text {rss }}$	Reverse Transfer Capacitance			65	100	
$\mathrm{t}_{\mathrm{d} \text { (on) }}$	Turn-on Delay Time	$\begin{gathered} \mathrm{V}_{\mathrm{GS}}=15 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DD}}=0.5 \mathrm{~V}_{\mathrm{DSS}} \\ \mathrm{I}_{\mathrm{D}}=\mathrm{I}_{\mathrm{D}[\text { Cont.] }} @ 25^{\circ} \mathrm{C} \\ \mathrm{R}_{\mathrm{G}}=1.6 \Omega \end{gathered}$		7	15	ns
t_{r}	Rise Time			5	10	
$\mathrm{t}_{\mathrm{d} \text { (off) }}$	Turn-off Delay Time			23	40	
t_{f}	Fall Time			12	25	

FUNCTIONAL CHARACTERISTICS

Symbol	Characteristic	Test Conditions	MIN	TYP	MAX	UNIT
G_{PS}	Common Source Amplifier Power Gain	$\mathrm{f}=40.68 \mathrm{MHz}$	13	15		dB
η	Drain Efficiency	$\begin{gathered} V_{G S}=0 \mathrm{~V} \quad V_{D D}=150 \mathrm{~V} \\ P_{\text {out }}=140 \mathrm{~W} \end{gathered}$	70	75		\%
ψ	Electrical Ruggedness VSWR 20:1		No Degradation in Output Power			

(1)Pulse Test: Pulse width < 380 mS, Duty Cycle < 2\%

APT Reserves the right to change, without notice, the specifications and information contained herein.

Figure 1, Typical Gain vs Frequency

Figure 2, Typical Capacitance vs. Drain-to-Source Voltage

Table 1 - Typical Class C Large Signal Input-Output Impedance

Freq. (MHz)	$\mathbf{Z}_{\text {in }}(\Omega)$	$\mathbf{Z}_{\text {oL }}(\Omega)$
2.0	$20.90-\mathrm{j} 9.2$	$56.00-\mathrm{j} 06.0$
13.5	$2.40-\mathrm{j} 6.8$	$37.00-\mathrm{j} 26.0$
27.0	$0.57-\mathrm{j} 2.6$	$18.00-\mathrm{j} 25.0$
40.0	$0.31-\mathrm{j} 0.5$	$9.90-\mathrm{j} 19.2$
65.0	$0.44+\mathrm{j} 1.9$	$4.35-\mathrm{j} 11.4$

$Z_{\text {in }}$ - gate shunted by 25Ω
$\mathrm{Z}_{\mathrm{OL}}-$ conjugate of optimum load impedance for 250 W at 150 V

40.68 MHz Test Circuit

Parts List

C1 -- 1800pF 100V chip
C2-C4 -- Arco 463 Mica Trimmer C5-C7 -- 1nF 500V COG chip L1 -- 1" \#16 AWG into hairpin ~9.6nH
L2 -- 6t \#16 AWG .25" ID ~165nH
L3 -- 10t \#18 AWG .25" ID $\sim 0.47 \mu \mathrm{H}$
L4 -- VK200-4B ferrite choke $\sim 3 \mu \mathrm{H}$
R1 -- 25 Ohm 1/2W Carbon T1 -- 9:1 Broadband Transformer

TO-247 Package Outline

[^0]: CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.

