

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

ARF463AP1 ARF463BP1 ARF463AP1G* ARF463BP1G*

*G Denotes RoHS Compliant, Pb Free Terminal Finish.

N-CHANNEL ENHANCEMENT MODE

RF POWER MOSFETs

125V 100W 100MHz

The ARF463AP1 and ARF463BP1 comprise a symmetric pair of common source RF power transistors designed for push-pull scientific, commercial, medical and industrial RF power amplifier applications up to 100MHz. They have been optimized for both linear and high efficiency classes of operation.

- Specified 125 Volt, 81.36MHz Characteristics:
 - ilea 125 voit, 01.50mi 12 onaracteristics.
 - Gain = 15dB (Class AB)
 - Efficiency = 75% (Class C)

Output Power = 100 Watts.

- Low Cost Common Source RF Package.
- Low Vth thermal coefficient.
- Low Thermal Resistance.
- Optimized SOA for Superior Ruggedness.

MAXIMUM RATINGS

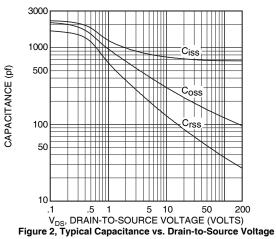
All Ratings: $T_C = 25^{\circ}C$ unless otherwise specified.

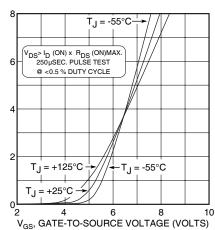
Symbol	Parameter	ARF463A_BP1(G)	UNIT	
V _{DSS}	Drain-Source Voltage	500	Volts	
V _{DGO}	Drain-Gate Voltage	500		
I _D	Continuous Drain Current @ T _C = 25°C	9	Amps	
V _{GS}	Gate-Source Voltage	±30	Volts	
P _D	Total Power Dissipation @ T _C = 25°C	180	Watts	
$R_{\theta JC}$	Junction to Case	0.70	°C/W	
T _J ,T _{STG}	Operating and Storage Junction Temperature Range	-55 to 150	- °C	
T _L	Lead Temperature: 0.063" from Case for 10 Sec.	300		

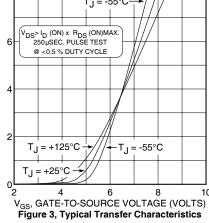
STATIC ELECTRICAL CHARACTERISTICS

Symbol	Characteristic / Test Conditions	MIN	TYP	MAX	UNIT	
BV _{DSS}	Drain-Source Breakdown Voltage ($V_{GS} = 0V$, $I_D = 250 \mu A$)	500			Volta	
V _{DS} (ON)	On State Drain Voltage (1) (I _D (ON) = 4.5A, V _{GS} = 10V)			5.0 Volts		
1	Zero Gate Voltage Drain Current (V _{DS} = V _{DSS} , V _{GS} = 0V)			25		
DSS	Zero Gate Voltage Drain Current (V _{DS} = 0.8 V _{DSS} , V _{GS} = 0V, T _C = 125°C)			250	μA	
I _{GSS}	Gate-Source Leakage Current (V _{GS} = ±30V, V _{DS} = 0V)			±100	nA	
9 _{fs}	Forward Transconductance $(V_{DS} = 25V, I_D = 4.5A)$	2	3	4	mhos	
V _{GS} (TH)	Gate Threshold Voltage $(V_{DS} = V_{GS}, I_{D} = 50 \text{mA})$	3		5	Volts	

CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.


Symbol	Characteristic	Test Conditions	MIN	TYP	MAX	UNIT
C _{iss}	Input Capacitance	V _{GS} = 0V		670		
C _{oss}	Output Capacitance	V _{DS} = 50V		120		pF
C _{rss}	Reverse Transfer Capacitance	f = 1 MHz		50		
t _{d(on)}	Turn-on Delay Time	V _{GS} = 15V		5.6		
t _r	Rise Time	$V_{DD} = 0.5 V_{DSS}$		4.3		ns
t _{d(off)}	Turn-off Delay Time	I _D = I _{D[Cont.]} @ 25°C		13.5		113
t _f	Fall Time	$R_{G} = 1.6\Omega$		4.2		


FUNCTIONAL CHARACTERISTICS


Symbol	Characteristic	Test Conditions	MIN	TYP	MAX	UNIT	
G _{PS}	Common Source Amplifier Power Gain	f = 81.36 MHz	13	15		dB	
η	Drain Efficiency	$V_{GS} = 0V$ $V_{DD} = 125V$	70	75		%	
Ψ	Electrical Ruggedness VSWR 10:1	P _{out} = 100W	No Deg	Degradation in Output Power			

¹ Pulse Test: Pulse width < 380 µS, Duty Cycle < 2%

APT Reserves the right to change, without notice, the specifications and information contained herein.

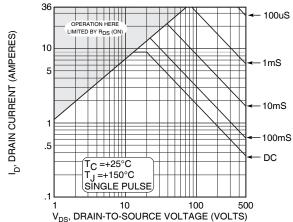
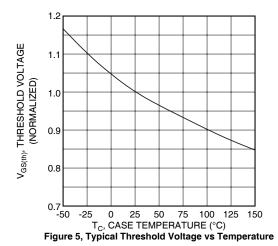
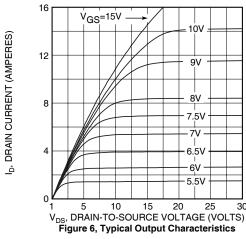




Figure 4, Typical Maximum Safe Operating Area

ID, DRAIN CURRENT (AMPERES)

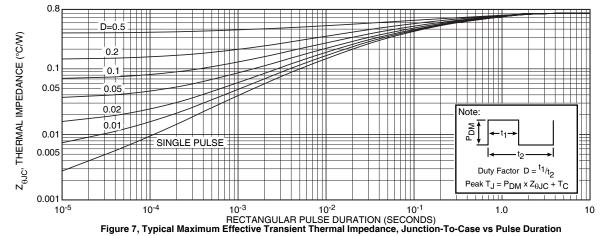
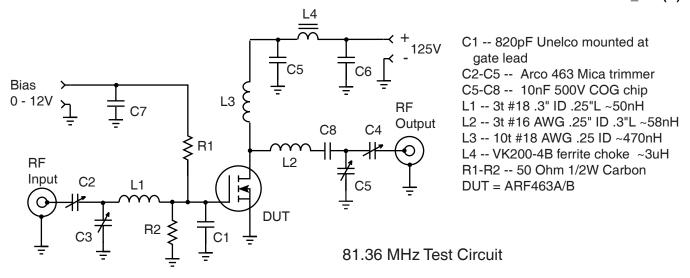
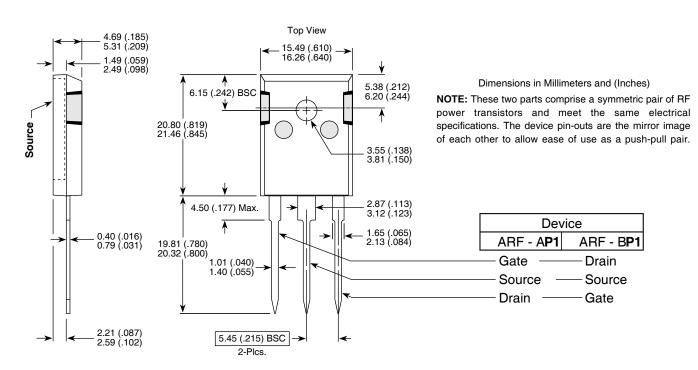



Table 1 - Typical Class AB Large Signal Input - Output Impedance


Freq. (MHz)	Z _{in} (Ω)	$Z_{OL}\left(\Omega\right)$
2.0	24 - j 5.0	55 - j 4.8
13.5	7.8 - j 11	41 - j 24
27	2.1 - j 6.4	23 - j 26.2
40	.74 - j 3.3	13.6 - j 22
65	.30 + j .42	6.1 - j 14.2
80	.46 + j 2.0	4.2 - j 10.7
100	.87 + j 3.7	2.7 - j 7.1

 $\rm Z_{in}~$ - Gate shunted with 25 Ω $\rm I_{DQ}$ = 50mA $\rm Z_{OL}$ - Conjugate of optimum load for 100 Watts output at V_dd = 125V

TO-247 Package Outline

e3 100% Sn Plated

