

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Common Source Push-Pull Pair

ARF473

RF POWER MOSFET

N-CHANNEL ENHANCEMENT MODE

165 V 300 W 150 MHz

The ARF473 is a matched pair of RF power transistors in a common source configuration. It is designed for high voltage push-pull or parallel operation in narrow band ISM and MRI power amplifiers up to 150 MHz.

- Specified 135 Volt, 130 MHz Characteristics:
 - **Output Power = 300 Watts.**
 - Gain = 13dB (Class AB)
 - Efficiency = 50%

- High Performance Push-Pull RF Package.
- High Voltage Breakdown and Large SOA for Superior Ruggedness.
- Low Thermal Resistance.

MAXIMUM RATINGS All Ratings: $T_C = 25^{\circ}C$ unless otherwise specified.

Symbol	Parameter	ARF473	UNIT
V _{DSS}	Drain-Source Voltage	500	Volts
I _D	Continuous Drain Current @ T _C = 25°C (each device)	10	Amps
V _{GS}	Gate-Source Voltage	±30	Volts
P _D	Total Device Dissipation @ T _C = 25°C	500	Watts
T _J ,T _{STG}	Operating and Storage Junction Temperature Range	-55 to 200	0.0
T _L	Lead Temperature: 0.063" from Case for 10 Sec.	300	°C

STATIC ELECTRICAL CHARACTERISTICS

Symbol	Characteristic / Test Conditions		TYP	МАХ	UNIT
BV _{DSS}	Drain-Source Breakdown Voltage (V _{GS} = 0V, I _D = 250 μA)	500			\/alta
V _{DS(ON)}	On State Drain Voltage (1) (I _{D(ON)} = 5A, V _{GS} = 10V)			4	Volts
	Zero Gate Voltage Drain Current (V _{DS} = V _{DSS} , V _{GS} = 0V)			25	
I _{DSS}	Zero Gate Voltage Drain Current (V _{DS} = 50V, V _{GS} = 0, T _C = 125°C)			250	μA
I _{GSS}	Gate-Source Leakage Current (V _{GS} = ±30V, V _{DS} = 0V)			±100	nA
g _{fs}	Forward Transconductance (V _{DS} = 25V, I _D = 5A)	4	6		mhos
g _{fs1/} g _{fs2}	Forward Transconductance Match Ratio (V _{DS} = 25V, I _D = 5A)	0.9		1.1	
V _{GS(TH)}	Gate Threshold Voltage $(V_{DS} = V_{GS}, I_{D} = 200 \text{mA})$	3		5	Valta
$\Delta V_{GS(TH)}$	Gate Threshold Voltage Match (V _{DS} = V _{GS} , I _D = 200mA)			0.1	Volts

THERMAL CHARACTERISTICS

Symbol	Characteristic	MIN	TYP	MAX	UNIT
$R_{\theta JC}$	Junction to Case			0.35	°C/W
$R_{\theta CS}$	Case to Sink (Use High Efficiency Thermal Joint Compound and Planar Heat Sink Surface.)		0.1		C/VV

CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.

Symbol	Characteristic	Test Conditions	MIN	TYP	MAX	UNIT
C _{iss}	Input Capacitance	V _{GS} = 0V		1200	1600	
C _{oss}	Output Capacitance	$V_{DS} = 50V$		140	200	pF
C _{rss}	Reverse Transfer Capacitance	f = 1 MHz		9	12	
t _{d(on)}	Turn-on Delay Time	V _{GS} = 15V		5.1	10	
t _r	Rise Time	$V_{DD} = 0.5 V_{DSS}$		4.1	8	ns
t _{d(off)}	Turn-off Delay Time	$I_D = I_{D[Cont.]} @ 25^{\circ}C$		12.8	20	113
t _f	Fall Time	$R_G = 1.6 \Omega$		4.0	8	

FUNCTIONAL CHARACTERISTICS (Push-Pull Configuration)

Symbol	Characteristic	Test Conditions	MIN	TYP	MAX	UNIT	
G _{PS}	Common Source Amplifier Power Gain	f = 130MHz	13	14		dB	
η	Drain Efficiency	$I_{dq} = 150 \text{mA}$ $V_{DD} = 135 \text{V}$	50	55		%	
Ψ	Electrical Ruggedness VSWR 5:1	P _{out} = 300W	No Deg	lo Degradation in Output Power			

 $[\]bigcirc$ Pulse Test: Pulse width < 380 µS, Duty Cycle < 2%.

APT Reserves the right to change, without notice, the specifications and information contained herein.

Per transistor section unless otherwise specified.

ID, DRAIN CURRENT (AMPERES)

Figure 7, Maximum Effective Transient Thermal Impedance, Junction-to-Case vs. Pulse Duration

Table 1 - Typical Series Equivalent Large Signal Input - Output Impedance

Freq. (MHz)	Z _{in} (Ω)	Z _{OL} (Ω)
27.12	4.78 - j 14.3	49 - j 38.8
40.68	1.96 - j 9	33.6 - j 39.5
63.8	0.59 - j 4.1	18 - j 33.5
81.36	0.31 - j 1.65	12.3 - j 29
127.4	0.4 + j 2.66	5.5 - j 20.3

 Z_{in} - Gate shunted with 100Ω I_{DQ} = 75 mA each side Z_{OL} - Conjugate of optimum load for 300 Watts output at V_{dd} = 125V Input and output impedances are measured from gate to gate and drain to drain respectively

81.36 MHz Test amplifier Po = 500W @ 130 V

C1 10-80 pF trimmer ARCO 462
C2-4 1000 pF NPO 500V chip $\[]$
C5-C9 10 nF 500V chip $\[]$
C10 .47 uF Ceramic 500V $\[]$
L1 680 nH 12t #24 enam .312" dia $\[]$
L2 55 nH 3t #18 enam .25" dia $\[]$
L3 2t #20 on Fair-Rite 2643006302 bead, ~ 2 uH $\[]$
R1-2 100 $\[]$ 0.5 W $\[]$
T1 4:1 RF transformer on two beads same as L3. $\[]$
T2 1:1 coax balun. Fair-Rite 2643665902 bead $\[]$
on 1.5" RG-303 50 $\[]$ teflon coax. $\[]$

TL1-2 Printed line L=1.2" w=.23"
TL3-4 Printed line L=.25" w=.23"
TL5-6 Printed line L=0.25" w=.23"

0.23" wide stripline on FR-4 board is \sim 32 Ω Z₀

120

Drain Supply Voltage Vdd

80

100

Notes:

П

The value of L2 must be adjusted as the supply voltage is changed to maintain resonance in the output circuit. At 81 MHz its value changes from approximately 50 nH at 100V to 70 nH at 165V.

The duty cycle past 100V must be reduced to insure power dissipation is within the limits of the device. Maximum pulse length should be 100mS or less. See figure 7.

140

160

Package Dimensions (inches)

HAZARDOUS MATERIAL WARNING

The ceramic portion of the device between leads and mounting flange is beryllium oxide. Beryllium oxide dust is highly toxic when inhaled. Care must be taken during handling and mounting to avoid damage to this area. These devices must never be thrown away with general industrial or domestic waste.