: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

RF POWER MOSFET

N－CHANNEL ENHANCEMENT MODE

165 V 300 W 150 MHz

The ARF473 is a matched pair of RF power transistors in a common source configuration．It is designed for high voltage push－pull or parallel operation in narrow band ISM and MRI power amplifiers up to 150 MHz ．
－Specified 135 Volt， 130 MHz Characteristics：
Output Power＝ 300 Watts．
Gain＝13dB（Class AB）
Efficiency $=50 \%$
－High Performance Push－Pull RF Package．
－High Voltage Breakdown and Large SOA for Superior Ruggedness．
－Low Thermal Resistance．

MAXIMUM RATINGS

All Ratings： $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise specified．

Symbol	Parameter	ARF473	UNIT
$\mathrm{V}_{\mathrm{DSS}}$	Drain－Source Voltage	500	Volts
I_{D}	Continuous Drain Current $@ \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$（each device）	10	Amps
V_{GS}	Gate－Source Voltage	± 30	Volts
P_{D}	Total Device Dissipation＠ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	500	Watts
$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\mathrm{STG}}$	Operating and Storage Junction Temperature Range	-55 to 200	C
T_{L}	Lead Temperature： $0.063^{\prime \prime}$ from Case for 10 Sec．	300	

STATIC ELECTRICAL CHARACTERISTICS

Symbol	Characteristic／Test Conditions	MIN	TYP	MAX	UNIT
$\mathrm{BV}_{\text {DSS }}$	Drain－Source Breakdown Voltage（ $\left.\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}\right)$	500			Volt
$\mathrm{V}_{\text {DS（ON）}}$	On State Drain Voltage ${ }^{(1)}\left(\mathrm{I}_{\mathrm{D}(0) \mathrm{S})}=5 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}\right)$			4	s
$\mathrm{I}_{\text {DSS }}$	Zero Gate Voltage Drain Current（ $\left.\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{DSS}}, \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}\right)$			25	$\mu \mathrm{A}$
	Zero Gate Voltage Drain Current（ $\left.\mathrm{V}_{\mathrm{DS}}=50 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C}\right)$			250	
$\mathrm{I}_{\text {GSS }}$	Gate－Source Leakage Current（ $\left.\mathrm{V}_{\mathrm{GS}}= \pm 30 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}\right)$			± 100	nA
$\mathrm{g}_{\text {fs }}$	Forward Transconductance（ $\left.\mathrm{V}_{\mathrm{DS}}=25 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5 \mathrm{~A}\right)$	4	6		mhos
$\mathrm{g}_{\mathrm{fs} 1 /} \mathrm{g}_{\mathrm{fs} 2}$	Forward Transconductance Match Ratio（ $\left.\mathrm{V}_{\mathrm{DS}}=25 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5 \mathrm{~A}\right)$	0.9		1.1	
$\mathrm{V}_{\text {GS（TH）}}$	Gate Threshold Voltage（ $\left.\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}=200 \mathrm{~mA}\right)$	3		5	Volts
$\Delta \mathrm{V}_{\text {GS（TH）}}$	Gate Threshold Voltage Match（ $\left.\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}=200 \mathrm{~mA}\right)$			0.1	

THERMAL CHARACTERISTICS

Symbol	Characteristic	MIN	TYP	MAX	UNIT
$R_{\theta J C}$	Junction to Case			0.35	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	Case to Sink（Use High Efficiency Thermal Joint Compound and Planar Heat Sink Surface．）		0.1		

隹 CAUTION：These Devices are Sensitive to Electrostatic Discharge．Proper Handling Procedures Should Be Followed．
APT Website－http：／／www．advancedpower．com

DYNAMIC CHARACTERISTICS (per section)
ARF473

Symbol	Characteristic	Test Conditions	MIN	TYP	MAX	UNIT
$\mathrm{C}_{\text {iss }}$	Input Capacitance	$\begin{aligned} & V_{G S}=0 V \\ & V_{D S}=50 V \\ & f=1 \mathrm{MHz} \end{aligned}$		1200	1600	pF
$\mathrm{C}_{\text {oss }}$	Output Capacitance			140	200	
$\mathrm{C}_{\text {rss }}$	Reverse Transfer Capacitance			9	12	
$\mathrm{t}_{\mathrm{d}(\mathrm{on})}$	Turn-on Delay Time	$\begin{gathered} \mathrm{V}_{\mathrm{GS}}=15 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DD}}=0.5 \mathrm{~V}_{\mathrm{DSS}} \\ \mathrm{I}_{\mathrm{D}}=\mathrm{I}_{\mathrm{D}[\text { Cont.] }]} @ 25^{\circ} \mathrm{C} \\ \mathrm{R}_{\mathrm{G}}=1.6 \Omega \end{gathered}$		5.1	10	ns
t_{r}	Rise Time			4.1	8	
$\mathrm{t}_{\mathrm{d} \text { (off) }}$	Turn-off Delay Time			12.8	20	
t_{f}	Fall Time			4.0	8	

FUNCTIONAL CHARACTERISTICS (Push-Pull Configuration)

Symbol	Characteristic	Test Conditions	MIN	TYP	MAX	UNIT
G_{PS}	Common Source Amplifier Power Gain	$\mathrm{f}=130 \mathrm{MHz}$	13	14		dB
η	Drain Efficiency	$\begin{gathered} \mathrm{I}_{\mathrm{dq}}=150 \mathrm{~mA} \quad \mathrm{~V}_{\mathrm{DD}}=135 \mathrm{~V} \\ \mathrm{P}_{\text {out }}=300 \mathrm{~W} \end{gathered}$	50	55		\%
ψ	Electrical Ruggedness VSWR 5:1		No Degradation in Output Power			

(1) Pulse Test: Pulse width < 380μ S, Duty Cycle < 2\%.

APT Reserves the right to change, without notice, the specifications and information contained herein.

Per transistor section unless otherwise specified.

Figure 1, Typical Gain vs. Frequency

Figure 2, Typical Capacitance vs. Drain-to-Source Voltage

Figure 5, Typical Threshold Voltage vs Temperature

Figure6, Typical Output Characteristics

Figure 7, Maximum Effective Transient Thermal Impedance, Junction-to-Case vs. Pulse Duration

Table 1 - Typical Series Equivalent Large Signal Input - Output Impedance

Freq. (MHz)	$\mathrm{Z}_{\text {in }}(\Omega)$	$\mathrm{Z}_{\mathrm{OL}}(\Omega)$
27.12	$4.78-\mathrm{j} 14.3$	$49-\mathrm{j} 38.8$
40.68	$1.96-\mathrm{j} 9$	$33.6-\mathrm{j} 39.5$
63.8	$0.59-\mathrm{j} 4.1$	$18-\mathrm{j} 33.5$
81.36	$0.31-\mathrm{j} 1.65$	$12.3-\mathrm{j} 29$
127.4	$0.4+\mathrm{j} 2.66$	$5.5-\mathrm{j} 20.3$

$Z_{i n}$ - Gate shunted with $100 \Omega \quad \mathrm{I}_{\mathrm{DQ}}=75 \mathrm{~mA}$ each side
Z_{OL} - Conjugate of optimum load for 300 Watts output at $\mathrm{V}_{\mathrm{dd}}=125 \mathrm{~V}$ Input and output impedances are measured from gate to gate and drain to drain respectively

ARF473

81.36 MHz Test amplifier Po = 500W @ 130 V

Abstract

Notes:] - The value of L 2 must be adjusted as the supply voltage is changed to maintain resonance in the output circuit. At 81 MHz its value changes from approximately 50 nH at 100 V to 70 nH at 165 V .

The duty cycle past 100 V must be reduced to insure power dissipation is within the limits of the device. Maximum pulse length should be 100 mS or less. See figure 7.

Package Dimensions (inches)

HAZARDOUS MATERIAL WARNINGロ

\square
The ceramic portion of the device between leads and mounting flange is beryllium oxide. Beryllium oxide dust is highly toxic when inhaled. Care must be taken during handling and mounting to avoid damage to this area. These devices must never be thrown away with general industrial or domestic waste.

