

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

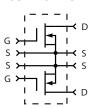
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

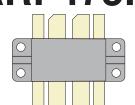
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China





RF POWER MOSFET N-CHANNEL PUSH - PULL PAIR

Common Source Push-Pull Pair ARF475FL

165V 450W 150MHz

The ARF475FL is a matched pair of RF power transistors in a common source configuration. It is designed for high voltage push-pull or parallel operation in narrow band ISM and MRI power amplifiers up to 150 MHz.

• Specified 150 Volt, 128 MHz Characteristics:

Output Power = 900 Watts Peak

Gain = 15dB (Class AB)

Efficiency = 50% min

- High Performance Push-Pull RF Package.
- High Voltage Breakdown and Large SOA for Superior Ruggedness.
- Low Thermal Resistance.
- RoHS Compliant * **
 *Pb Free Terminal Finish.

MAXIMUM RATINGS

All Ratings: T_C = 25°C unless otherwise specified.

Symbol	Parameter	ARF475FL	UNIT
V _{DSS}	Drain-Source Voltage	500	Volts
V_{DGO}	Drain-Gate Voltage	500	Volta
I _D	Continuous Drain Current @ T _C = 25°C (each device)	10	Amps
V_{GS}	Gate-Source Voltage	±30	Volts
P_{D}	Total Device Dissipation @ T _C = 25°C	910	Watts
T_J , T_{STG}	Operating and Storage Junction Temperature Range	-55 to 175	°C
T_L	Lead Temperature: 0.063" from Case for 10 Sec.	300	

STATIC ELECTRICAL CHARACTERISTICS (each device)

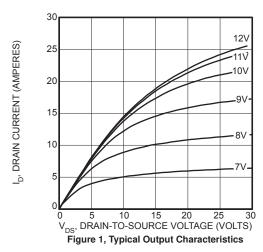
Symbol	Characteristic / Test Conditions		TYP	MAX	UNIT
BV _{DSS}	Drain-Source Breakdown Voltage (V _{GS} = 0V, I _D = 250 μA)	500			Volts
V _{DS(ON)}	On State Drain Voltage (I _{D(ON)} = 5A, V _{GS} = 10V)		2.9	4	VOILS
I _{DSS}	Zero Gate Voltage Drain Current (V _{DS} = V _{DSS} , V _{GS} = 0V)			100	μA
DSS	Zero Gate Voltage Drain Current (V _{DS} = 50V, V _{GS} = 0, T _C = 125°C)			500	μ, ,
I _{GSS}	Gate-Source Leakage Current (V _{GS} = ±30V, V _{DS} = 0V)			±100	nA
9 _{fs}	Forward Transconductance $(V_{DS} = 15V, I_{D} = 5A)$	3	3.6		mhos
g _{fs1/} g _{fs2}	Forward Transconductance Match Ratio (V _{DS} = 15V, I _D = 5A)	0.9		1.1	
V _{GS(TH)}	Gate Threshold Voltage $(V_{DS} = V_{GS}, I_{D} = 200 \text{mA})$	2	3.3	4	Volts
$DV_{GS^{(TH)}}$	Gate Threshold Voltage Match ($V_{DS} = V_{GS}$, $I_{D} = 200$ mA)			0.2	VOILS

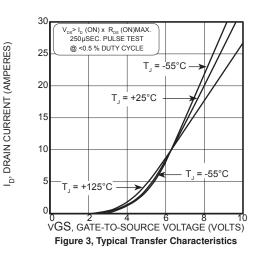
THERMAL CHARACTERISTICS

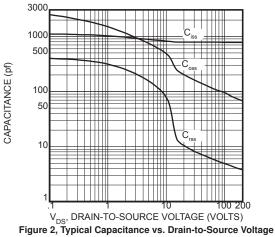
Symbol	Characteristic	MIN	TYP	MAX	UNIT
$R_{\theta JC}$	Junction to Case		0.15	0.165	°C/W
R _{øJHS}	R _{0JHS} Junction to Sink (Use High Efficiency Thermal Grease and Planar Heat Sink Surface.)		0.30	0.33	0/11

CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.

Symbol	Characteristic	Test Conditions	MIN	TYP	MAX	UNIT
C _{iss}	Input Capacitance	V _{GS} = 0V		780	830	
C _{oss}	Output Capacitance	V _{DS} = 50V		125	130	pF
C _{rss}	Reverse Transfer Capacitance	f = 1MHz		7	9	
t _{d(on)}	Turn-on Delay Time	V _{GS} = 15V		5.1	10	
t _r	Rise Time	V _{DD} = 250V		4.1	8	ns
t _{d(off)}	Turn-off Delay Time	I _D = I _{D[Cont.]} @ 25°C		12	18	110
t _f	Fall Time	R _G = 1.6 W		4.0	7	


FUNCTIONAL CHARACTERISTICS (Push-Pull Configuration)


Symbol	Characteristic	Test Conditions	MIN	TYP	MAX	UNIT
G _{PS}	Common Source Amplifier Power Gain	f = 128 MHz Idq = 15mA V _{DD} = 150V	14	16		dB
η	Drain Efficiency	Idq = 15mA V _{DD} = 150V P _{out} = 900W PW = 3ms	50	55		%
Ψ	Electrical Ruggedness VSWR 5:1	PW = 3ms 10% duty cycle	No Degradation in Output Power			


 $^{^{\}bigodot}$ Pulse Test: Pulse width < 380 $\mu\text{S},$ Duty Cycle < 2%.

Microsemi Reserves the right to change, without notice, the specifications and information contained herein.

Per transistor section unless otherwise specified.

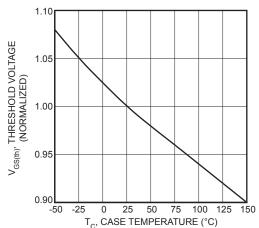


Figure 4, Typical Threshold Voltage vs Temperature

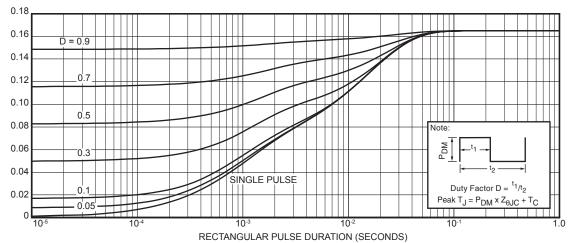


FIGURE 5a, MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs PULSE DURATION

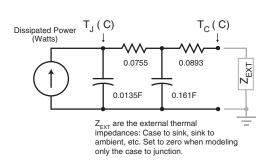
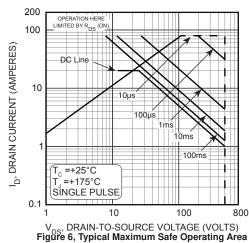
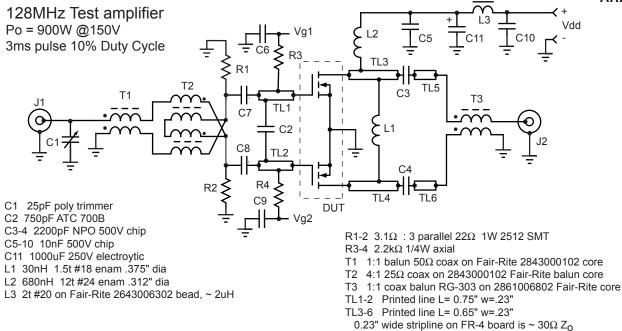
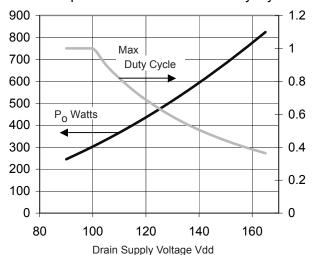
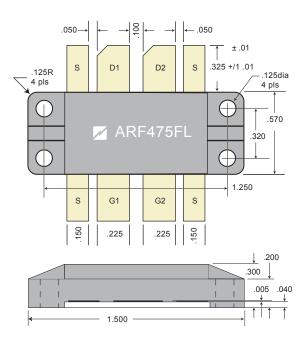


Figure 5b, TRANSIENT THERMAL IMPEDANCE MODEL


Table 1 - Typical Series Equivalent Large Signal Input - Output Impedance


Freq. (MHz)	Z _{in} (Ω) gate to gate	$Z_{OL}\left(\Omega ight)$ drain - drain
30	5.2 -j10	41 -j20
60	1.37 -j5.2	26 -j25
90	.53 -j2.6	16 -j23
120	.25 -j1.0	10 -j20
150	.25 +j0.2	6.7 -j17

 Z_{in} - Gate -gate shunted with 25 $_\Omega$ I $_{DQ}$ = 15mA each side Z_{OL} - Conjugate of optimum load for 600 Watts peak output at V $_{dd}$ = 150V $_{25\%}$ duty cycle and PW = 5ms

Peak Output Power vs. Vdd and Duty Cycle

Notes:

The value of L1 must be adjusted as the supply voltage is changed to maintain resonance in the output circuit. At 128MHz its value changes from approximately 40nH at 100V to 30nH at 150V.

With the 50Ω drain-to-drain load, the duty cycle above 100V must be reduced to insure power dissipation is within the limits of the device. Maximum pulse length should be 100mS or less. See transient thermal impedance, figure 5.

Thermal Considerations and Package Mounting:

The rated power dissipation is only available when the package mounting surface is at 25°C and the junction temperature is 175°C. The thermal resistance between junctions and case mounting surface is 0.16°C/W. When installed, an additional thermal impedance of 0.15°C/W between the package base and the mounting surface is typical. Insure that the mounting surface is smooth and flat. Thermal joint compound must be used to reduce the effects of small surface irregularities. Use the minimum amount necessary to coat the surface. The heatsink should incorporate a copper heat spreader to obtain best results.

The package design clamps the ceramic base to the heatsink. A clamped joint maintains the required mounting pressure while allowing for thermal expansion of both the base and the heat sink. Four 4-40 (M3) screws provide the required mounting force. T = 2.5 - 3.5 in-lb (0.28 - 0.40 N-m).

HAZARDOUS MATERIAL WARNING

The white ceramic portion of the device between leads and mounting surface is beryllium oxide, BeO. Beryllium oxide dust is toxic when inhaled. Care must be taken during handling and mounting to avoid damage to this area. These devices must never be thrown away with general industrial or domestic waste.