

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

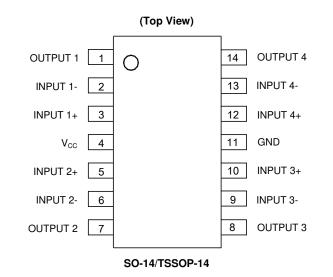
Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

LOW POWER QUAD OPERATIONAL AMPLIFIERS

Description

The AS324/324A consist of four independent, high gain and internally frequency compensated operational amplifiers. They are specifically designed to operate from a single power supply. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage. Typical applications include transducer amplifiers, DC gain blocks and most conventional operational amplifier circuits.


The AS324/324A series are compatible with industry standard 324. The AS324A has more stringent input offset voltage than AS324.

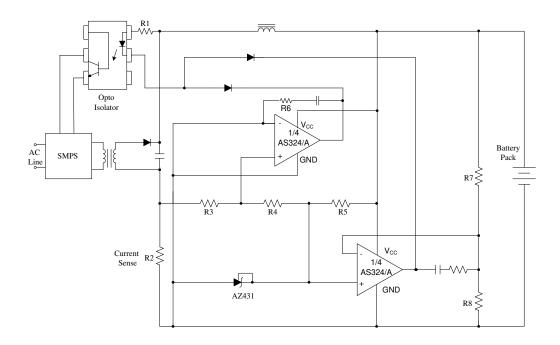
The AS324 is available in SO-14 and TSSOP-14 packages, and the AS324A is available in SO-14 package.

Features

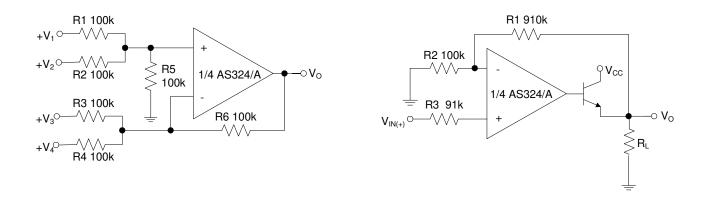
- Internally Frequency Compensated for Unity Gain
- Large Voltage Gain: 100dB (Typical)
- Low Input Bias Current: 20nA (Typical)
- Low Input Offset Voltage: 2mV (Typical)
- Low Supply Current: 0.5mA (Typical)
- Wide Power Supply Voltage Range:
 - Single Supply: 3V to 36V
 - Dual Supplies: ±1.5V to ±18V
- Input Common Mode Voltage Range Includes Ground
- Large Output Voltage Swing: 0V to V_{CC} -1.5V
- Power Drain Suitable for Battery Operation
- Lead-Free Packages: SO-14, TSSOP-14
 - Totally Lead-Free; RoHS Compliant (Notes 1 & 2)
- Lead-Free Packages, Available in "Green" Molding Compound: SO-14, TSSOP-14
 - Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
 - Halogen and Antimony Free. "Green" Device (Note 3)

Pin Assignments

Applications

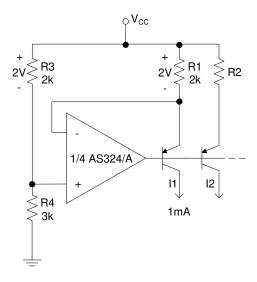

- Battery Charger
- Cordless Telephone
- Switching Power Supply

Notes:

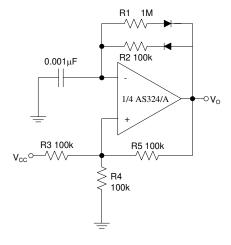

- 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.
- 2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
- 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.

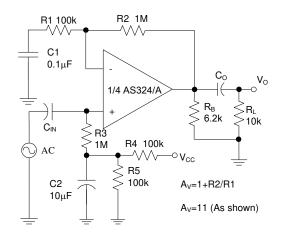
Typical Applications Circuit

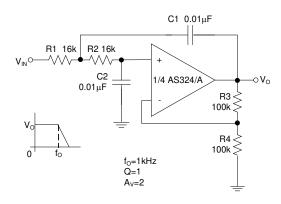
Battery Charger



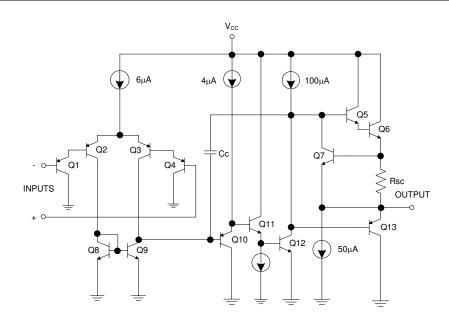
DC Summing Amplifier


Power Amplifier


Typical Applications Circuit (Cont.)


Fixed Current Sources

Pulse Generator


AC Coupled Non-Inverting Amplifier

DC Coupled Low-Pass RC Active Filter

Functional Block Diagram

Absolute Maximum Ratings (Note 4)

Symbol	Parameter	Rati	Unit	
V _{CC}	Supply Voltage	40		V
V _{ID}	Differential Input Voltage	40		V
V _{IN}	Input Voltage	-0.3 to 40		V
P _D		SO-14	800	
	Total Power Dissipation (T _A = +25°C)	TSSOP-14	710	mW
TJ	Operating Junction Temperature	+150		°C
T _{STG}	Storage Temperature Range	-65 to +150		°C
T _{LEAD}	Lead Temperature (Soldering, 10 Seconds)	+26	°C	

Note 4: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

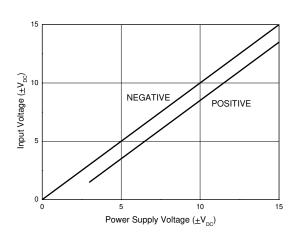
Recommended Operating Conditions

Symbol	Parameter	Min	Мах	Unit
V _{CC}	Supply Voltage	3	36	V
T _A	Ambient Operating Temperature Range	-40	+85	°C

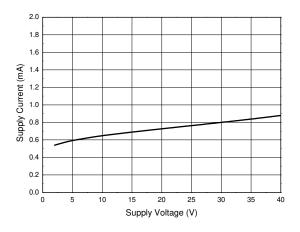
Electrical Characteristics (Limits in standard typeface are for $T_A = +25^{\circ}C$, **bold** typeface applies over $T_A = -40^{\circ}C$ to $+85^{\circ}C$ (Note 5), $V_{CC} = 5V$, GND = 0V, unless otherwise specified.)

Symbol	Pa	rameter	Conditions		Min	Тур	Max	Unit
V _{IO}	Least Office Wellson			AS324	_	2	5	mV
			$V_{O} = 1.4V, R_{S} = 0\Omega,$	A5324	_	_	7	
	input Onset voltage	Input Offset Voltage		AS324A	_	2	3	mV
				A5324A	_	_	5	
$\Delta V_{IO}/\Delta T$	Average Temperatur Offset Voltage	e Coefficient of Input	$T_A = -40 \text{ to } +85^{\circ}\text{C}$		_	7	_	μV/°C
lio	Input Offset Current		I _{IN+} - I _{IN} -, V _{CM} = 0V		_	5	30	nA
I _{IO}	input Onset Ourrent		11N+ - 11N-, VCM = UV		_	_	100	IIA
laura	Input Bias Current		I_{IN} + or I_{IN} -, V_{CM} = 0V		_	20	100	nA
I _{BIAS}	Input bias outrent		IN+ OI IN-, VCM = OV		_	_	200	IIA
V_{IR}	Input Common Mode	Voltage Range (Note 6)	V _{CC} = 30V		0	_	V _{CC} - 1.5	٧
	Supply Current		$T_A = -40 \text{ to } +85^{\circ}\text{C},$	V _{CC} = 30V	_	1.0	3	mA
Icc	Supply Current		R _L = ∞	V _{CC} = 5V	_	0.7	1.2	IIIA
0	Lorgo Signal Voltage	Oale	V 15V D > 2k0	\/ 1\/ to 11\/	85 100	_	dB.	
G∨	Large Signal Voltage	Gaiii	$V_{CC} = 15V, R_L \ge 2k\Omega,$	VO = 1 V 10 11 V	80	_	_	dB
CMRR	Common Mada Baia	Common Mode Dejection Datie		50.44		70	_	dB
CIVIAN	Common Mode Rejection Ratio		DC, $V_{CM} = 0$ to $(V_{CC}-1.5)V$		60	_	_	
DCDD	PSRR Power Supply Rejection Ratio		V _{CC} = 5 to 30V		70	100	_	- dB
ronn					60	_	_	
CS	Channel Separation		f = 1kHz to 20kHz		_	-120	_	dB
		Source	V _{IN} + = 1V, V _{IN} - = 0V, V _{CC} = 15V, V _O =	20	40	_	mA mA	
ISOURCE	Output Current		2V		20	_		_
			V_{IN} + = 0V, V_{IN} - = 1V, V_{CC} = 15V, V_{O} = 2V		10	15		_
I _{SINK}					5	_		_
			$V_{IN+} = 0V, V_{IN-} = 1V, V_{0.2V}$	12	50	_	μΑ	
Isc	Output Short Circuit Current to Ground		V _{CC} = 15V		_	40	60	mA
				V 20V D 21-0		_	_	V
\/			$V_{CC} = 30V, R_L = 2k\Omega$		26	_	_	
V _{ОН}	Output Voltage Swin	Output Voltage Swing			27	28	_	V
	Output Voltage Swift			$V_{CC} = 30V$, $R_L = 10k\Omega$		_	_	
V	V _{OL}		V 5V D. = 10k0		_	5	20	mV
V OL			$V_{CC} = 5V$, $R_L = 10k\Omega$		_	_	30	111 V
Α	Thermal Resistance (Junction to Case)		SO-14			18	18 _	°C/W
θЈС			TSSOP-14	_	20			
θ _{JA}	Thermal Resistance (Junction to Ambient)		SO-14			91		°C/W
UJA			TSSOP-14	133		1	J/ V V	

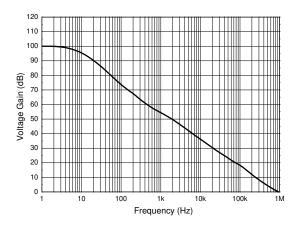
Notes:

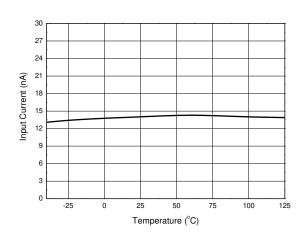

 $^{{\}bf 5.\ Limits\ over\ the\ full\ temperature\ are\ guaranteed\ by\ design,\ but\ not\ tested\ in\ production.}$

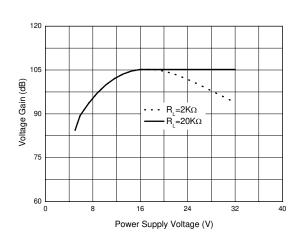
^{6.} The input common-mode voltage of either input signal voltage should not be allowed to go negatively by more than 0.3V (at +25°C). The upper end of the common-mode voltage range is V_{CC} -1.5V (at +25°C), but either or both inputs can go to +36V without damages, independent of the magnitude of the V_{CC} .

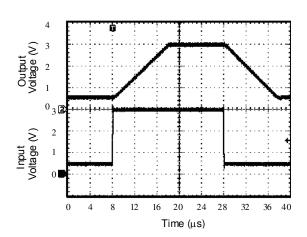


Performance Characteristics

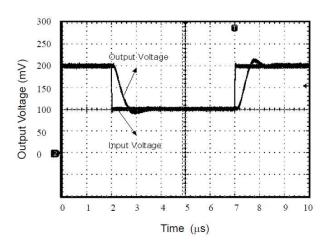

Input Voltage Range

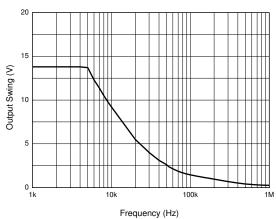

Supply Current


Open Loop Frequency Response

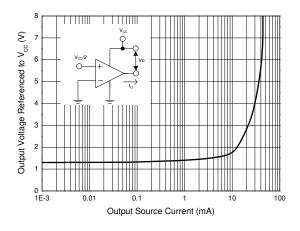

Input Current

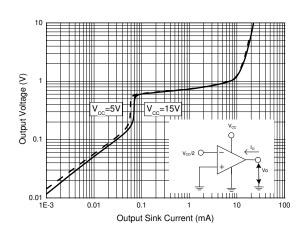
Voltage Gain

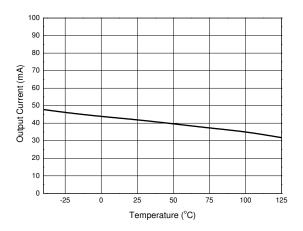

Voltage Follower Pulse Response



Performance Characteristics (Cont.)


Voltage Follower Pulse Response (Small Signal)


Large Signal Frequency Response


Output Characteristics: Current Sourcing

Output Characteristics: Current Sinking

Current Limiting

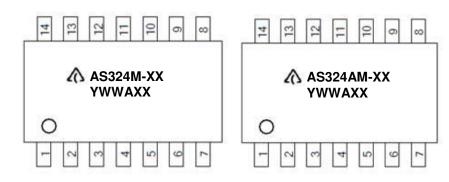
Ordering Information

	Part Number	Package (Note 8)	RoHS Compliant Lead Free / Green	Marking ID	Packing	Quantity	Status (Note 7)	Alternative
Lead-Free	AS324M-E1	SO-14	Lead Free	AS324M-E1	Tube	NA	End of Life	AS324MTR-G1
Lead-Free	AS324MTR-E1	SO-14	Lead Free	AS324M-E1	Tape & Reel	2500	NRND	AS324MTR-G1
Lead-Free	AS324AM-E1	SO-14	Lead Free	AS324AM-E1	Tube	NA	End of Life	AS324AMTR-G1
Lead-Free	AS324AMTR-E1	SO-14	Lead Free	AS324AM-E1	Tape & Reel	2500	NRND	AS324MTR-G1
Lead-Free Green	AS324M-G1	SO-14	Green	AS324M-G1	Tube	NA	End of Life	AS324AMTR-G1
Pb Lead-Free Green	AS324MTR-G1	SO-14	Green	AS324M-G1	Tape & Reel	2500	In Production	_
	AS324AM-G1	SO-14	Green	AS324AM-G1	Tube	NA	End of Life	AS324AMTR-G1
	AS324AMTR-G1	SO-14	Green	AS324AM-G1	Tape & Reel	2500	In Production	_
(A)	AS324GTR-E1	TSSOP-14	Lead Free	EGS324	Tape & Reel	2500	NRND	AS324GTR-G1
(94)	AS324GTR-G1	TSSOP-14	Green	GGS324	Tape & Reel	2500	In Production	_

Notes:

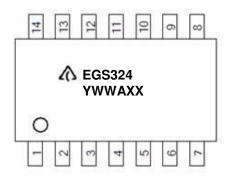
All variants with package DIP-14 are End of Life without replacements.

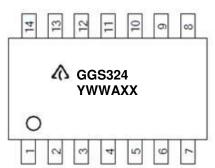
NRND: Not Recommended for New Design.


^{7.} All variants in Tube packing with package SO-14 are End of Life.

^{8.} For packaging details, go to our website at: https://www.diodes.com/design/support/packaging/diodes-packaging/.

Marking information

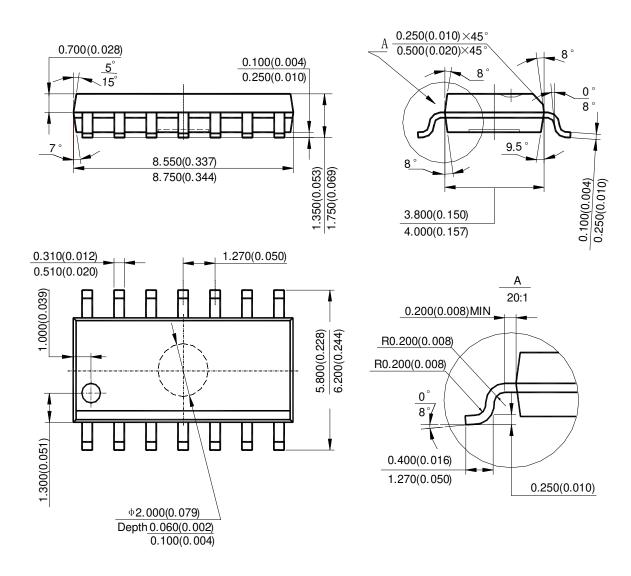

(1) SO-14



First Line: Logo and Marking ID (See Ordering Information) Second Line: Date Code Y: Year

WW: Work Week of Molding A: Assembly House Code XX: 7th and 8th Digits of Batch Number

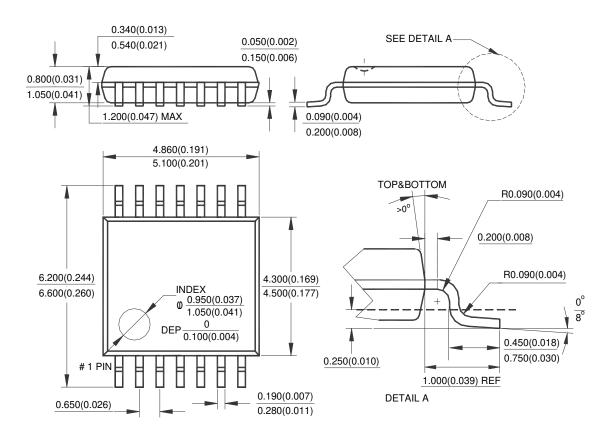
(2) TSSOP14


First Line: Logo and Marking ID (See Ordering Information) Second Line: Date Code Y: Year WW: Work Week of Molding

WW: Work Week of Molding
A: Assembly House Code
XX: 7th and 8th Digits of Batch Number

Package Outline Dimensions (All dimensions in mm(inch).)

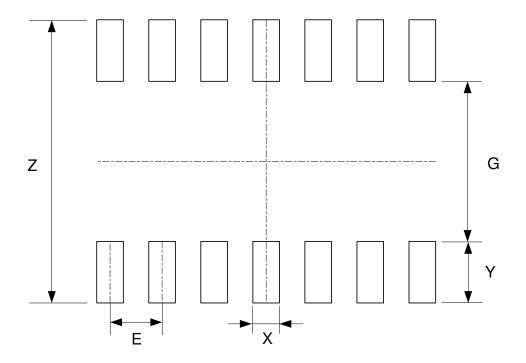
(1) Package Type: SO-14



Note: Eject hole, oriented hole and mold mark is optional.

Package Outline Dimensions (Cont. All dimensions in mm(inch).)

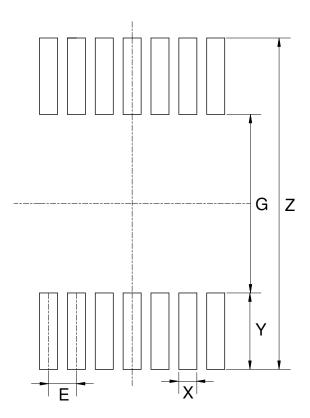
(2) Package Type: TSSOP-14



Note: Eject hole, oriented hole and mold mark is optional.

Suggested Pad Layout

(1) Package Type: SO-14



Dimensions	Z	G	X	Y	E
	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)
Value	6.900/0.272	3.900/0.154	0.650/0.026	1.500/0.059	1.270/0.050

Suggested Pad Layout (Cont.)

(2) Package Type: TSSOP-14

Dimensions	Z	G	X	Y	E
	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)
Value	7.720/0.304	4.160/0.164	0.420/0.017	1.780/0.070	0.650/0.026

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

- A. Life support devices or systems are devices or systems which:
 - 1. are intended to implant into the body, or
 - 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
- B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2018, Diodes Incorporated

www.diodes.com