imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

AS3412 Ultra Small ANC Speaker Driver

General Description

The AS3412 is a speaker driver with Ambient Noise Cancelling function for headsets, headphones or ear pieces. They are intended to improve quality of e.g. music listening, a phone conversation etc. by reducing background ambient noise.

The fully analog implementation allows the lowest power consumption, lowest system BOM cost and most natural received voice enhancement otherwise difficult to achieve with DSP implementations. The device is designed to be easily applied to existing architectures.

An internal OTP-ROM can be optionally used to store the microphones gain calibration settings. The AS3412 can be used in different configurations for best trade-off in terms of noise cancellation, required filtering functions and mechanical designs. The AS3412 targeting feed-forward topology is used to effectively reduce frequencies typically up to 2-3 kHz.

The filter loop for the system is determined by measurements, for each specific headset individually, and depends very much on mechanical designs. The gain and phase compensation filter network is implemented with cheap resistors and capacitors for lowest system costs.

Ordering Information and Content Guide appear at end of datasheet.

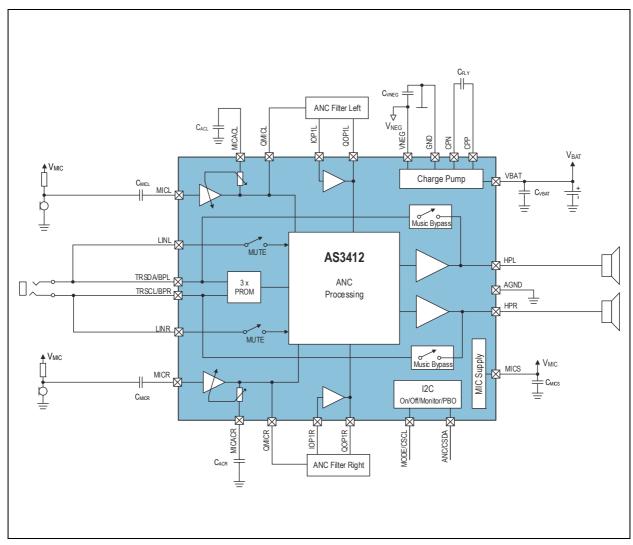
Key Benefits & Features

The benefits and features of this device are listed below:

Figure 1: Added Value of Using AS3412

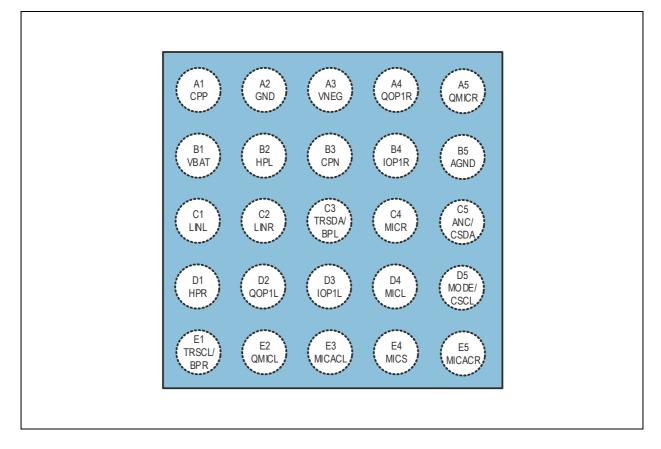
Benefits	Features
Low noise floor	Low noise amplifiers
Integrated music bypass switch	Depletion mode transistors for passive music bypass
Smallest ANC form factor	WL-CSP package (2.2x2.2mm, 0.4mm pitch)

Applications


The devices are ideal for Ear Pieces, Headsets, Hands-Free Kits, Mobile Phones, and Voice Communicating Devices.

Block Diagram

The functional blocks of the AS3412 are shown below:


AS3412 Block Diagram: This figure shows the functional blocks of the AS3412.

Pin Assignment

Pin Diagram

Figure 3: Pin Diagram of AS3412

Pin Description

Figure 4: AS3412 Pin Assignment

Pin Name	Pin Number	Pin Type	Description
AGND	B5	ANA OUT	Analog reference ground. Has to be connected to GND pin. For better noise performance a star shaped ground concept is the preferred option to connect these pins together.
LINL	C1	ANA IN	Line input EQ left channel.
TRSDA/ BPL	C3	ANA IN/OUT	Data input for production trimming. Can be connected to LINL pin to enable production trimming via 3.5mm audio jack. Furthermore this pin features also music bypass function for the left audio channel in off mode operation in order to replace and external analog switch.

Pin Name	Pin Number	Pin Type	Description
TRSCL/ BPR	E1	ANA IN/OUT	Clock input for production trimming. Can be connected to LINR pin to enable production trimming via 3.5mm audio jack. Furthermore this pin features also music bypass function for the right audio channel in off mode operation in order to replace an external analog switch.
LINR	C2	ANA IN	Line input EQ right channel.
ANC / CSDA	C5	DIG IN	Serial interface data for I ² C interface and ANC control to enable/disable ANC.
MODE / CSCL	D5	DIG IN	Serial Interface Clock for I ² C interface and control pin for power up/down and Monitor mode.
MICACL	E3	ANA OUT	Microphone preamplifier AC coupling ground terminal. This pin requires a 10μ F capacitor connected to AGND pin.
MICL	D4	ANA IN	ANC microphone input left channel.
MICS	E4	SUP OUT	Microphone Supply output. This pin needs an output blocking capacitor with 10μ F.
MICR	C4	ANA IN	ANC microphone preamplifier input right channel.
MICACR	E5	ANA OUT	Microphone preamplifier AC coupling ground terminal. This pin requires a 10μ F capacitor connected to AGND pin.
QMICR	A5	ANA OUT	ANC microphone preamplifier output right channel.
IOP1R	B4	ANA IN	ANC filter OpAmp1 input right channel.
QOP1R	A4	ANA OUT	ANC filter OpAmp1 output right channel.
HPL	B2	ANA OUT	Headphone amplifier output left channel
HPR	D1	ANA OUT	Headphone amplifier output right channel
VBAT	B1	SUP IN	Positive supply terminal of IC.
СРР	A1	ANA OUT	V _{NEG} charge pump flying capacitor positive terminal.
GND	A2	GND	V _{NEG} charge pump ground terminal. Has to be connected to AGND pin. For better noise performance a star shaped ground concept is the preferred option to connect these pins together.
CPN	B3	ANA OUT	V _{NEG} charge pump flying capacitor negative terminal.
VNEG	A3	SUP OUT	V _{NEG} charge pump output.
QOP1L	D2	ANA IN	Filter OpAmp1 output left channel.
IOP1L	D3	ANA OUT	Filter OpAmp1 input left channel.
QMICL	E2	SUP IN	ANC microphone preamplifier output left channel.

Absolute Maximum Ratings

Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated under Electrical Characteristics is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Figure 5: Absolute Maximum Ratings of AS3412

Symbol	Parameter	Min	Мах	Units	Comments					
	Electrical Parameters									
V _{GND_MAX}	Ground Terminals	-0.5	0.5	V	Applicable for pin AGND and GND					
V _{SUP_MAX}	Supply Voltage to Ground	-0.5	2.1	V	Applicable for pin VBAT					
V _{NEG_MAX}	Negative Terminals	-2.0	0.5	V	Applicable for pin VNEG					
V _{CP_MAX}	Charge Pump Terminals	V _{NEG} -0.5	V _{NEG} +0.5	V	Applicable for pins CPN and CPP					
V _{HP_MAX}	Headphone Pins	V _{NEG} -0.5	V _{NEG} +0.5	V	Applicable for pins HPR and HPL					
V _{ANA_MAX}	Analog Pins	V _{NEG} -0.5	V _{NEG} +0.5	V	Applicable for pins LINL, LINR, MICL/R, HPR, HPL, QMICL/R, IOP1x, QOP1x, CPP, CPN, TRSCL/BPR, TRSDA/BPL, MICACL and MICACR					
V _{CON_MAX}	Control Pins	V _{NEG} -0.5	5	V	Applicable for pins ANC/CSDA and MODE/CSCL					
V _{OTHER_MAX}	Other Pins	V _{NEG} -0.5	5	V	Applicable for pins MICS					
I _{SCR}	Input Current (latch-up immunity) ^{(1) (2)}	±1	00	mA	JEDEC 17					
	Contir	nuous Powe	r Dissipatior	n (T _A = 70°	C)					
P _T	Continuous power dissipation	-	tbd	mW						
		Electros	atic Dischar	ge						
ESD _{HBM}	Electrostatic Discharge HBM	± 2	000	V	JEDEC JESD22-A114C					
	Temper	ature Range	es and Stora	ge Condit	ions					
R _{THJA}	Junction to Ambient Thermal Resistance	tbd	tbd	°C/W						

Symbol	Parameter	Min	Мах	Units	Comments
Тյ	Operating Junction Temperature		85	°C	
T _{STRG}	Storage Temperature Range	-55	125	°C	
T _{BODY}	Package Body Temperature		260	°C	IPC/JEDEC J-STD-020 The reflow peak soldering temperature (body temperature) is specified according to IPC/JEDEC J-STD-020 "Moisture/Reflow Sensitivity Classification for Non-hermetic Solid State Surface Mount Devices."
RH _{NC}	Relative Humidity (non-condensing)	5	85	%	
MSL	Moisture Sensitivity Level		1		Unlimited floor lifetime

Note(s):

1. Latch-up test was performed with VBAT supplied and both AGND and GND grounded.

2. VNEG, CPP, CPN, MICACL and MICACR are not Latch-up stressed because these are passive pins.

Electrical Characteristics

 $V_{BAT} = 1.6V$ to 1.8V, $T_A = -20$ °C to 85°C. Typical values are at $V_{BAT} = 1.6V$, $T_A = 25$ °C, unless otherwise specified. All limits are guaranteed. The parameters with min and max values are guaranteed with production tests or SQC (Statistical Quality Control) methods.

Figure 6: Electrical Characteristics of AS3412

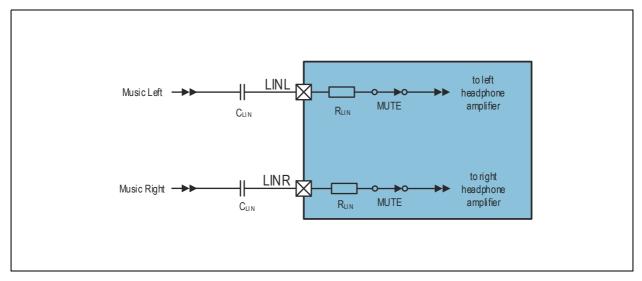
Symbol	Parameter	Condition	Min	Max	Unit
T _A	Ambient Temperature Range		-20	85	°C
		Supply Voltages	·	·	
GND	Reference Ground		0	0	V
V _{BAT}	Battery Supply Voltage		1.6	1.8	V
V _{NEG}	Charge Pump Voltage		-1.8	-1.45	V
V _{DELTA}	Difference of Ground Supplies GND, AGND	To achieve good performance, the negative supply terminals should be connected to a low impedance ground plane.	-0.1	0.1	V
		Other Pins			
V _{MICS}	Microphone Supply Voltage	MICS	0	3.7	V
V _{ANALOG}	Analog Pins	MICACL, MICACR,LINR, LINL, HPR, HPL, QMICL, QMICR, IOP1x, and QOP1x	V _{NEG}	V _{BAT}	V
V _{CONTROL}	Control Pins	MODE/CSCL, ANC/CSDA	0	3.7	V
V _{CP}	Charge Pump pins	CPN and CPP	V _{NEG}	V _{BAT}	V
V _{TRIM}	Application Trim Pins	TRSCL/BPR and TRSDA/BPL	V _{NEG} -0.3 or -1.8	V _{BAT} +0.5 or 1.8	V
V _{MIC}	Microphone Inputs	MICL and MICR	V _{NEG}	V _{BAT}	V

Figure 7:

Electrical Characteristics (continued)

Symbol	Parameter	Condition	Min	Тур	Max	Unit			
	Block Power Requirements								
I _{OFF}	Off mode current	MODE/CSCL pin low, device switched off	0.4	1	10	μΑ			
I _{SYS}	Reference supply current	V _{BAT} = 1.8V; Bias generation, oscillator, POR; V _{NEG} disabled	0.16	0.25	0.3	mA			
I _{MIC}	Mic gain stage current	V _{BAT} = 1.8V; no signal, stereo, normal mode	0.82	1.4	2	mA			
MIC	Mic gain stage current	V _{BAT} = 1.8V; no signal, stereo, ECO mode	0.58	1.1	1.4	mA			
I _{HP}	Headphone stage current	V _{BAT} = 1.8V; no signal, normal mode	1.5	2.4	3.1	mA			
		V _{BAT} = 1.8V; no signal, ECO mode	1.18	2.0	2.9	mA			
	MICS charge pump current	V _{BAT} = 1.8V; no load	0.36	0.5	0.9	mA			
I _{MICS}		V _{BAT} = 1.6V; no load	0.36	0.4	0.85	mA			
		V _{BAT} = 1.8V; OP1L and OP1R enabled, normal mode	0.85	1.25	1.75	mA			
I _{OP1}	OP1 supply current	V _{BAT} = 1.8V; OP1L and OP1R enabled, ECO mode	0.65	0.9	1.37	mA			
'OP1		V _{BAT} = 1.6V; OP1L and OP1R enabled, normal mode	0.8	1.2	1.68	mA			
		V _{BAT} = 1.6V; OP1L and OP1R enabled, ECO mode	0.6	0.85	1.32	mA			
	Тур	ical System Power Consumption							
P _{FF}	Typical power consumption feed forward application	OP1L, OP1R enabled, Microphone supply enabled, no load, V _{BAT} =1.6V		10		mW			
P _{FF_ECO}	Typical power consumption feed forward application in ECO mode	All blocks in ECO mode OP1L, OP1R enabled Microphone supply enabled, no load, V _{BAT} =1.6V		8		mW			

Electrical Characteristics: Shows the electrical characteristics like typical supply voltages as well as system current consumption.


Detailed Description

This section provides a detailed description of the device related components.

Audio Line Input

The chip features one stereo line input for music playback. In monitor mode the line inputs can also be muted in order to stop music playback and increase speech intelligibility.

Figure 8: Stereo Line Input

Stereo Line Input: This diagram shows the internal structure of the line input.

If there is a high pass function desired in an application, to block very low frequencies that could harm the speaker, or eliminate little offset voltages a simple capacitor C_{LIN} could do this function. The implementation is shown in Figure 8. The correct capacitor value for the desired cut-off frequency can be calculated with the following formula:

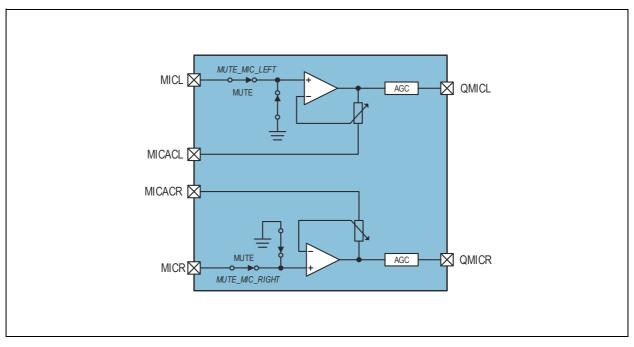
(EQ1)
$$C_{\text{LIN}} = \frac{1}{2 \cdot \pi \cdot R_{\text{LIN}} \cdot f_{\text{cut-off}}}$$

A typical cut-off frequency in an audio application is 20Hz. With an input impedance R_{LIN} of typ. 2k and a desired cut off frequency of 20Hz the input capacitor should be bigger than 4µF. Therefore a typical value of 4.7µF is recommended.

Parameter

V_{BAT}=1.65V, T_A= 25°C unless otherwise specified

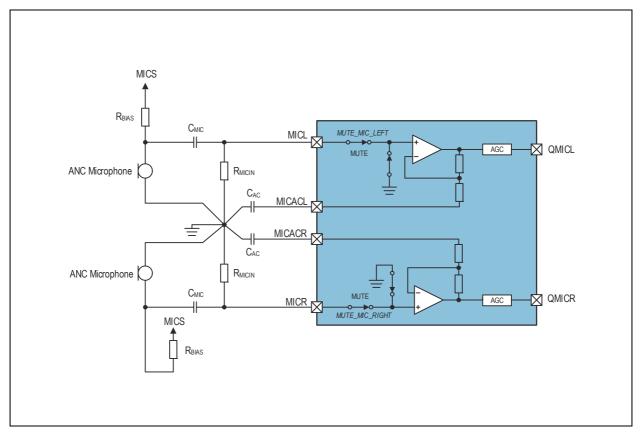
Figure 9: Line Input Parameter


Symbol	Parameter	Condition	Min	Тур	Max	Unit
V _{LIN}	Input Signal Level			0.9*V _{BAT}		V _{PEAK}
R _{LIN}	Input Impedance			2		kΩ

Line Input Parameter: This table shows the detailed electrical characteristics of the line input.

Microphone Inputs

The AS3412 offers two low noise microphone inputs with full digital control and a dedicated DC offset cancellation pin for each microphone input. In total each gain stage offers up to 63 gain steps of 0.5dB resulting in a gain range from 0dB to +31dB. The microphone gain is stored digitally during production on an OTP memory. Besides the standard microphone gain register for left and right channel, the chip features also two additional microphone gain registers for monitor mode. Thus, in monitor mode, a completely different gain setting for left and right microphone can be selected to implement voice filter functions in order to amplify the speech band for better speech intelligibility.


Stereo Microphone Input: This diagram shows the internal structure of the stereo microphone preamplifier including the mute switch as well as the automatic gain control (AGC).

To avoid unwanted start-up pop noise, a soft-start function is implemented for an automatic gain ramping of the device. In case of an overload condition on the microphone input (e.g. high sound pressure level), an internal state machine reduces the microphone gain automatically. For some designs it might be useful to switch off this feature. Especially in feed-back systems very often infrasound can cause an overload condition of the microphone preamplifier which results in low frequency noise. This behavior can be avoided by disabling the AGC function.

Input Capacitor Selection

The microphone preamplifier needs one bias resistor (R_{Bias}) per channel as well as DC blocking capacitors (C_{MIC}). The capacitors C_{AC} are DC blocking capacitors to avoid DC amplification of the non-inverting microphone preamplifier. This capacitor has an influence on the frequency response because the internal feedback resistors create a high pass filter together with the capacitor C_{AC} . The typical application circuit is shown in Figure 11 with all necessary components.

Figure 11: Microphone Capacitor Selection Circuit

Microphone Capacitor Selection Circuit: This diagram shows a typical microphone application circuit with all necessary components to operate the amplifier.

The corner frequency of this high pass filter is defined with the capacitor C_{AC} and the gain of the headphone amplifier. Figure 12 shows an overview of typical cut-off frequencies with different microphone gain settings.

Figure 12: Microphone Cut-Off Frequency Overview

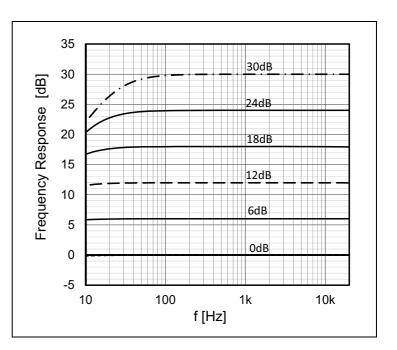
Microphone Gain	R ₁	R ₂	F _{cut-off}
OdB	22.2kΩ	0Ω	1.7Hz
3dB	15716Ω	6484Ω	1.9Hz
6dB	11126Ω	11074Ω	2.2Hz
9dB	7877Ω	14323Ω	2.7Hz
12dB	5576Ω	16623Ω	3.5Hz
15dB	3948Ω	18252Ω	4.5Hz
18dB	2795Ω	19405Ω	6.1Hz
21dB	1979Ω	20221Ω	8.4Hz
24dB	1400Ω	20800Ω	11.5Hz
27dB	992Ω	21208Ω	16.3Hz
30dB	702Ω	21498Ω	22.7Hz

Microphone Cut-Off Frequency Overview: This table shows an overview of the different cut-off frequencies with $C_{AC}=10\mu F$, $C_{MIC}=2.2\mu F$ and $R_{MICIN}=22k\Omega$ of the microphone preamplifier.

Filter Simulations: It is important when doing the ANC filter simulations to include all microphone filter components to incorporate the gain and phase influence of these components.

In the cut-off frequency overview, capacitor C_{AC} was defined as 10µF which results in a rather low cut-off frequency for best ANC filter design. If a different capacitor value is desired in the application, the following formula defines the transfer function of the high pass circuit of the microphone preamplifier:

(EQ2)
$$|\mathbf{A}| = \frac{\sqrt{4 \cdot C_{\mathbf{AC}}^2 \cdot \mathbf{f}^2 \cdot (\mathbf{R}_1 + \mathbf{R}_2)^2 \cdot \pi^2 + 1}}{\sqrt{4 \cdot C_{\mathbf{AC}}^2 \cdot \mathbf{f}^2 \cdot \mathbf{R}_1^2 \cdot \pi^2 + 1}}$$


The simplified transfer function does not include the high pass filter defined by C_{MIC} and R_{MICIN} . With the recommended values of 2.2µF for C_{MIC} and 22k Ω for R_{MICIN} this filter can be neglected because of the very low cut-off frequency of 1.5Hz.

The cut-off frequency for this filter can be calculated with the following formula:

(EQ3)
$$f_{cut-off} = \frac{1}{2 \cdot \pi \cdot R_{MICIN} \cdot C_{MIC}}$$

The simulated frequency response for the microphone preamplifier with the recommended component values is shown in Figure 13.

Figure 13: Simulated Microphone Frequency Response

In application with PCB space limitations it is also possible to remove the capacitors C_{AC} and connect MICACL and MICACR pins directly to A_{GND} . In this configuration AC coupling of the QMICR and QMICL signals is recommended.

Microphone Frequency Response: This graph shows the frequency response of the microphone preamplifier with different gain settings with C_{AC} =10µF, C_{MIC} =2.2µF and R_{MICIN} =22k Ω .

ams Datasheet [v1-00] 2016-Apr-06

Parameter

 $V_{BAT}{=}1.8V,$ $T_{A}{=}$ 25°C, $C_{AC}{=}10\mu F,$ $C_{MIC}{=}4.7\mu F$ and $R_{MICIN}{=}2.2k\Omega$ unless otherwise specified.

Figure 14: Microphone Parameter

Symbol	Parameter	Condition	Min	Тур	Мах	Unit
V _{MICIN} 0		A _{MIC} = 10dB		80		mV _{RMS}
V _{MICIN} 1	Input Signal Level	A _{MIC} = 20dB		40		mV _{RMS}
V _{MICIN} 2		A _{MIC} = 30dB		10		mV _{RMS}
		0dB gain, High quality mode, AGC off		118.5		dB
		10dB gain, High quality mode, AGC off		109		dB
SNR	Signal to Noise Ratio	20dB gain, High quality mode, AGC off		99.5		dB
		0dB gain, ECO mode, AGC off		117		dB
		10dB gain, ECO mode, AGC off		107		dB
		20dB gain, ECO mode, AGC off		98		dB
		0dB gain, 20Hz – 20kHz bandwidth, high quality		1.2		μV
		10dB gain, 20Hz – 20kHz bandwidth, High quality		4.2		μV
V _{NOISE-A}	A-Weighted Output Noise	20dB gain, 20Hz – 20kHz bandwidth, High quality		13.5		μV
* NOISE-A	Floor	0dB gain, 20Hz – 20kHz bandwidth, ECO mode		1.4		μV
		10dB gain, 20Hz – 20kHz bandwidth, ECO mode		4.6		μV
		20dB gain, 20Hz – 20kHz bandwidth, ECO mode		14.8		μV
I _{MIC}	Block Current	V _{BAT} = 1.8V; no signal, stereo, normal mode	0.82	1.4	2	mA
'MIC	Consumption	V _{BAT} = 1.8V; no signal, stereo, ECO mode	0.58	1.2	1.4	mA

Symbol	Parameter	Condition	Min	Тур	Мах	Unit
	Programmable Gain	Discrete logarithmic gain steps	0		+31	dB
A _{MIC}	Gain Steps Size			0.5		dB
	Gain Step Precision				0.2	dB
Δ_{AMIC}	Gain Ramp Rate	V_{PEAK} related to V_{BAT} or V_{NEG}		1		ms/step
V _{ATTACK}	Limiter Activation Level	V_{PEAK} related to V_{BAT} or V_{NEG}		0.40		1
V _{DECAY}	Limiter Release Level	64 @ 0.5dB		0.31		1
A _{MICLIMIT}	Limiter Minimum Gain			0		dB
t _{ATTACK}	Limiter Attack Time			5		µs/step
t _{DECAY}	Limiter Decay Time			1		ms/step

Microphone Parameter: This table shows the detailed electrical characteristics of the microphone preamplifier gain stage.

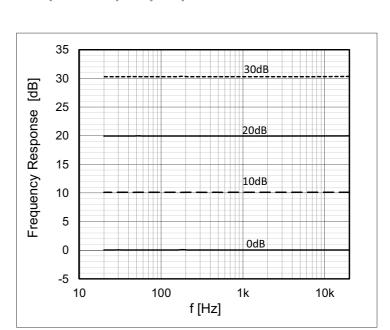


Figure 15: Microphone Frequency Response

Microphone Frequency Response: This graph shows the frequency response of the microphone preamplifier with different gain settings without R_{MICIN} resistor, C_{AC} capacitor (MICACx pin connected to A_{GND}) and C_{MIC} =10uF.

Figure 16: Microphone THD+N vs. V_{input}

Microphone THD+N vs. Vinput: This graph shows the A-weighted THD+N versus input voltage of the microphone preamplifier with 0dB gain and V_{BAT} =1.8V.

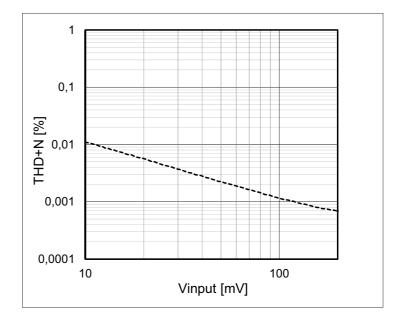
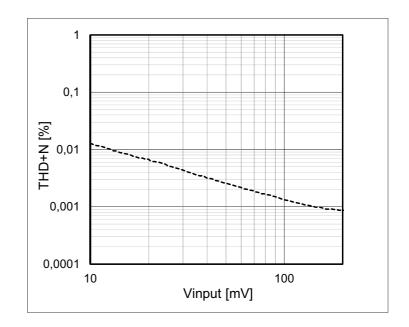
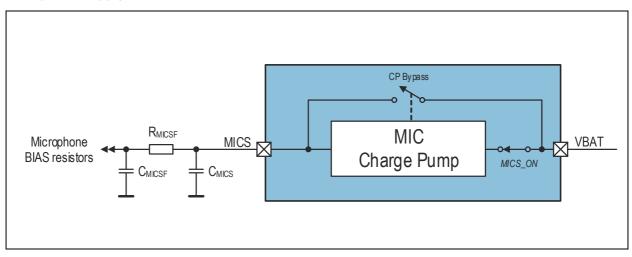



Figure 17: Microphone THD+N vs. V_{input} ECO Mode


Microphone THD+N vs. Vinput: This graph shows the A-weighted THD+N versus input voltage of the microphone preamplifier with 0dB gain and V_{BAT} =1.8V. The amplifier runs in ECO mode.

Microphone Supply

The AS3412 features an integrated microphone supply charge pump. This charge pump provides the proper microphone supply voltage even with a 1.8V chip supply voltage in order to increase the sensitivity of the microphone.

Figure 18: Microphone Supply

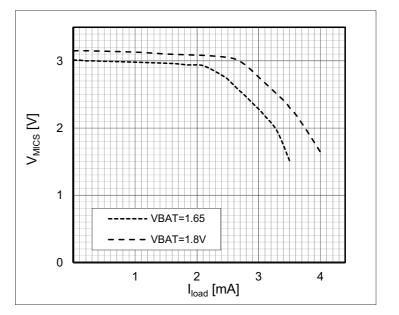
Therefore the integrated charge pump generates a microphone supply voltage which is typically 2.7V. The microphone supply voltage is also used to switch off the integrated music bypass switch of the AS3412 is in active mode. Therefore, during normal operation the microphone supply must not be switched off if the TRSDA/BPL and TRSCL/BPR pins are in use.

Bypass Switch Operation: When using the TRSDA/BPL and TRSCL/BPR pins you must not switch off the microphone supply!

Parameter

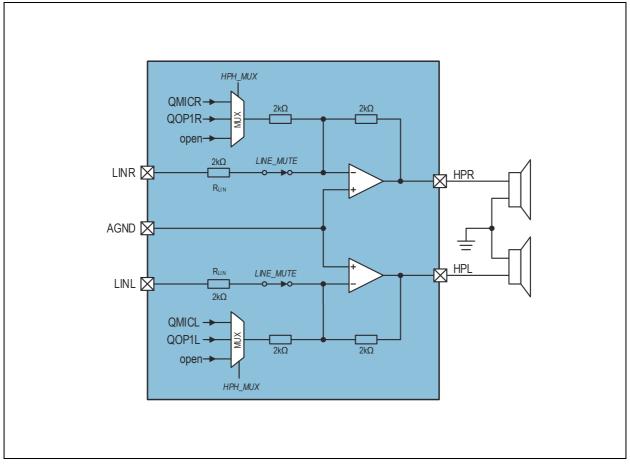
 V_{BAT} =1.8V, T_A = 25°C, C_{MICS} = 22µF, C_{MICSF} = 47µF and R_{MICSF} = 220 Ω unless otherwise specified.

Figure 19: Microphone Supply Parameter


Symbol	Parameter	Condition	Min	Тур	Мах	Unit
V _{MICS}	Microphone Supply	V _{BAT} = 1.8V, no load		3.4		V
MICS	Voltage	V _{BAT} = 1.65V, no load		3.2		V
l.u.ee	I _{MICS} Block Current Consumption	V _{BAT} = 1.8V; no load	0.36	0.5	0.9	mA
'MICS		V _{BAT} = 1.65V; no load	0.36	0.4	0.85	mA
	Microphone Supply Noise	A-Weighted, 500μA load		1.4		μV
V _{Noise-A}		A-Weighted, 550µA load, only C _{MICS} = 22uF assembled		11		μV
		A-Weighted, 500µA load, only C _{MICS} = 10uF assembled		15		μV

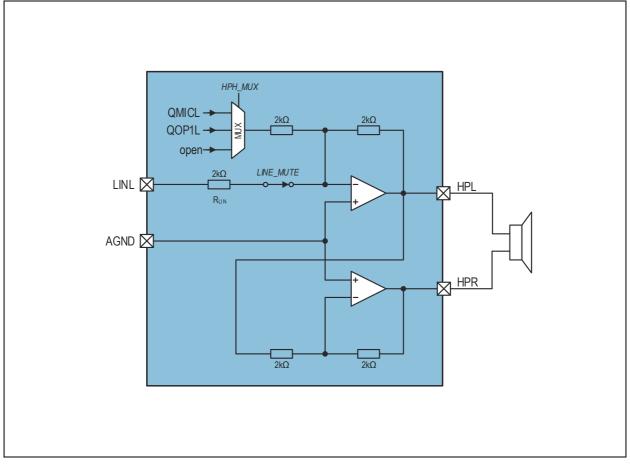
Microphone Supply Parameter: This table shows the detailed electrical characteristics of the microphone supply.

Microphone Supply Load


Characteristic: This diagram shows output voltage of the microphone supply vs. output load on the microphone supply.

Headphone Amplifier

The headphone amplifier is a true ground output using V_{NEG} as negative supply. It is designed to feature an output power of 2x34mW @ 32 Ω load. For higher output requirements, the headphone amplifier is also capable of operating in bridged mode. In this mode the left output is carrying the inverted signal of the right output shown in Figure 22. With a V_{BAT} voltage of 1.8V, a maximum output power of 90mW can be achieved. This is required for over- and on ear headsets with higher output power requirements. The amplifier itself features various input sources. The line input signal is directly connected to the headphone amplifier. The input multiplexer supports three different input signals which can be configured according to the *HPH_MUX* register. The "Open" setting is being used to disable the active noise cancelling function.


Figure 21: Headphone Amplifier Single Ended

Headphone Amplifier Single Ended: This figure shows the block diagram of the headphone amplifier including the integrated music bypass switches as well as the summation input of the amplifier in single ended configuration.

Figure 22: Headphone Amplifier Differential

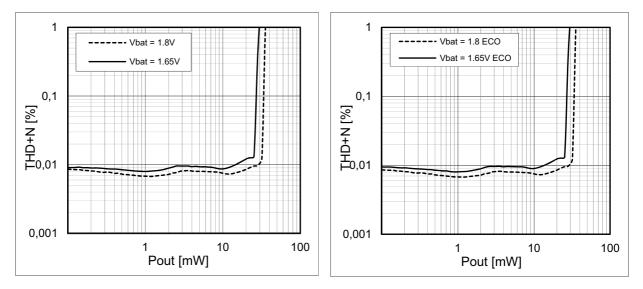
Headphone Amplifier Differential: This figure shows the block diagram of the headphone amplifier including the integrated music bypass switches as well as the summation input of the amplifier in differential output mode.

Parameter

 $V_{BAT} = 1.8V$, $T_A = 25$ °C, unless otherwise specified.

Figure 23: Headphone Amplifier Parameter

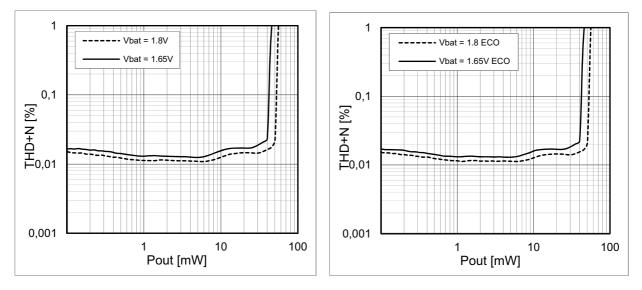
Symbol	Parameter	Condition	Min	Тур	Max	Unit
R _{L_HP}	Load Impedance	Stereo mode	16	32		Ω
		Mono	32			Ω
C _{L_HP}	Load Capacitance	Stereo mode			100	pF
P _{HP}	Nominal Output Power Stereo Mode	$V_{bat} = 1.8V$; 32 Ω load; THD<0.1%		34		mW
		V _{bat} = 1.65V; 32Ω load; THD<0.1%		29		mW
		$V_{bat} = 1.8V$; 16 Ω load; THD<0.1%		50		mW
		V _{bat} = 1.65V; 16Ω load; THD<0.1%		41		mW
P _{HP_BRIDGE}	Nominal Output Power Differential Mode	$V_{bat} = 1.8V$; 32 Ω load		90		mW
		V _{bat} = 1.65V; 32Ω load		75		mW
I _{HPH}	Supply current	V _{BAT} = 1.8V; no signal, normal mode	1.5	2.4	3.1	mA
		V _{BAT} = 1.8V; no signal, ECO mode	1.18	2	2.9	mA
P _{SRRHP}	Power Supply Rejection Ratio	1kHz		100		dB
SNR	Signal to Noise Ration	High Quality Mode, Line Input -> HPH stereo in phase test signal; 32Ω load; V _{BAT} = 1.8V;		111.5		dB
		High Quality Mode, Line Input -> HPH stereo out of phase test signal; 32Ω load; V _{BAT} = 1.8V;		112.5		dB
		ECO Mode, Line Input -> HPH stereo in phase test signal; 32Ω load; V _{BAT} = 1.8V;		109.5		dB
		ECO Mode, Line Input -> HPH stereo out of phase test signal; 32Ω load; V _{BAT} = 1.8V;		110.5		dB
Channel Separation		32Ω load		93		dB



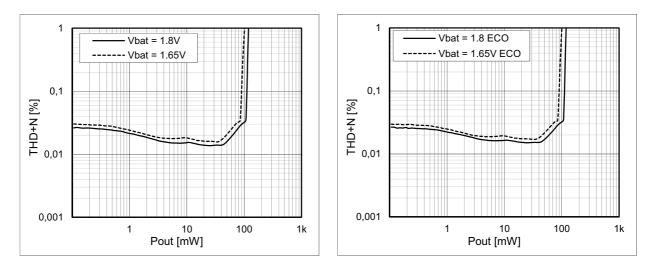
Symbol	Parameter	Condition	Min	Тур	Max	Unit
V _{Noise-A}	Output Noise Floor A-Weighted	High Quality Mode; 32Ω load; HP_MUX = nc; LINx connected to ground		2.5		μV
		ECO Mode; 32Ω load; <i>HP_MUX</i> = nc; LINx connected to ground		3.1		μV

Headphone Amplifier Parameter: This table shows the detailed electrical characteristics of the headphone amplifier like output power, SNR and channel separation.

Figure 24:


Headphone THD+N vs. Output Power 32Ω Stereo

Headphone THD+N vs. Output Power: These figures shows the THD+N measurements of the headphone amplifier with different supply voltages in normal mode and ECO mode. The amplifier gain is 0dB with 32Ω load.


Figure 25:

Headphone THD+N vs. Output Power 16Ω Stereo

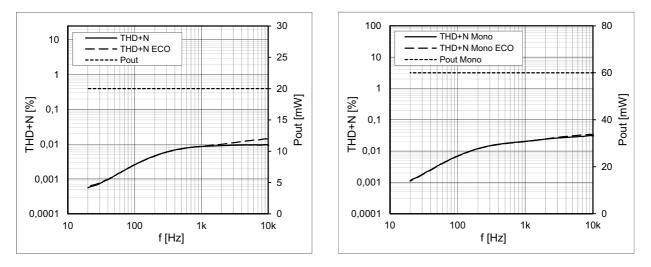

Headphone THD+N vs. Output Power: These figures shows the THD+N measurements of the headphone amplifier with different supply voltages in normal mode and ECO mode. The amplifier gain is 0dB with 16Ω load.

Figure 26: Headphone THD+N vs. Output Power 32Ω Mono

Headphone THD+N vs. Output Power: These figures shows the A-weighted THD+N measurements of the headphone amplifier with different supply voltages in normal mode and ECO mode. The amplifier gain is 6dB with 32Ω load in mono configuration.

Figure 27: Headphone THD+N vs. Frequency 32Ω Stereo/Mono

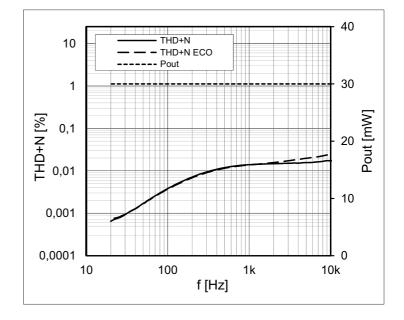
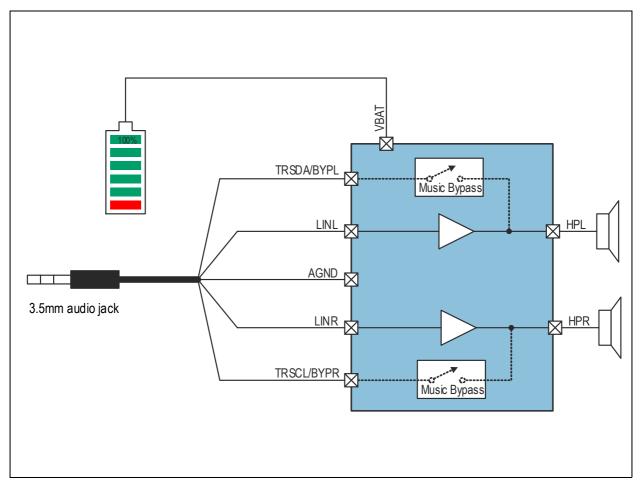

Headphone THD+N vs. Frequency: These figures shows the A-weighted THD+N measurements over frequency in stereo and mono differential mode with V_{BAT} =1.8V. The amplifier gain is 0dB and the load in both modes is 32 Ω with 1mW and 5mW output power.

Figure 28: Headphone THD+N vs. Frequency 16Ω Stereo

Headphone THD+N vs. Frequency:


These figures shows the A-weighted THD+N measurements over frequency in stereo mode with V_{BAT} =1.8V. The amplifier gain is 0dB and the load is 16 Ω .

Integrated Music Bypass Switch

If the AS3412 is switched off, the device features a unique integrated music bypass function. The bypass switches can be used to replace a mechanical switch to bypass the music signal in off mode or if the headset runs out of battery. Figure 29 shows the basic music playback path of the AS3412 with a full battery. In this mode the line input signal is feed to the headphone amplifier. The integrated bypass switches are automatically disabled in this operation mode.

Figure 29: Bypass Mode Inactive

Bypass Mode Active: This block diagram shows the general music playback path of AS3412 with the integrated music bypass switches disabled.

Figure 30 shows the AS3412 in off mode with an empty battery. This is basically the same use case as no battery at all. In this mode the internal bypass switch becomes active. The headphone amplifier is not powered because the headset has run out of battery and the bypass switch becomes active. Thus the music signal coming from the 3.5mm audio jack is routed through the ANC chip, without any power source connected to the device, to the speakers.