

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

AS3415/AS3435

Integrated Active Noise Cancelling Solution with Bypass Feature

General Description

The AS3415/35 are speaker drivers with Ambient Noise Cancelling function for headsets, headphones or ear pieces. They are intended to improve quality of e.g. music listening, a phone conversation etc. by reducing background ambient noise.

The fully analog implementation allows the lowest power consumption, lowest system BOM cost and most natural received voice enhancement otherwise difficult to achieve with DSP implementations. The device is designed to be easily applied to existing architectures.

An internal OTP-ROM can be optionally used to store the microphones gain calibration settings. The AS3415/35 can be used in different configurations for best trade-off of noise cancellation, required filtering functions and mechanical designs.

The simpler feed-forward topology is used to effectively reduce frequencies typically up to 2-3 kHz. The feed-back topology with either 1 or 2 filtering stages has its strengths especially at very low frequencies. The typical bandwidth for a feed-back system is from 20Hz up to 1 kHz which is lower than the feed-forward systems.

The filter loop for both systems is determined by measurements, for each specific headset individually, and depends very much on mechanical designs. The gain and phase compensation filter network is implemented with cheap resistors and capacitors for lowest system costs.

Ordering Information and Content Guide appear at end of datasheet.

Key Benefits & Features

The benefits and features of AS3415/35, Integrated Active Noise Cancelling Solution with Bypass Feature are listed below:

Figure 1: Added Value of Using AS3415/35

Benefits	Features
All ANC Topologies	Feed Forward, Feed Back and Hybrid
No mechanical audio bypass switch	Integrated depletion mode transistors
Music EQ functionality	Ultra flexible low power EQ circuit

Benefits	Features
Longest play time	10mW @1.5V stereo ANC; <1μA quiescent
Highest audio quality	2x24mW, 0.1% THD+N @ 32Ω, 1.5V supply
Smallest package	Two different packages available: • AS3415 QFN32 [5x5mm] 0.5mm pitch • AS3435 QFN36 [5x5mm] 0.4mm pitch
Low battery indication	LED driver with selectable driving strength
Different control interface options	Push Button-, Slide switch- or I ² C control interface
Highly innovative production trimming interface	OTP production trimming via audio interface
Active hearing mode with or without ANC and optional voice EQ	Monitor mode function

Applications

The devices are ideal for:

- Ear pieces
- Headsets
- Hands-Free Kits
- Mobile Phones
- Voice Communicating Devices

Block Diagram

The functional blocks of AS3415/35 for reference are shown below:

Figure 2: AS3415 Block Diagram

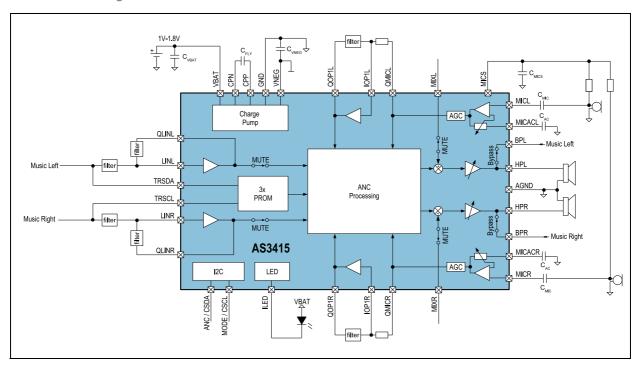
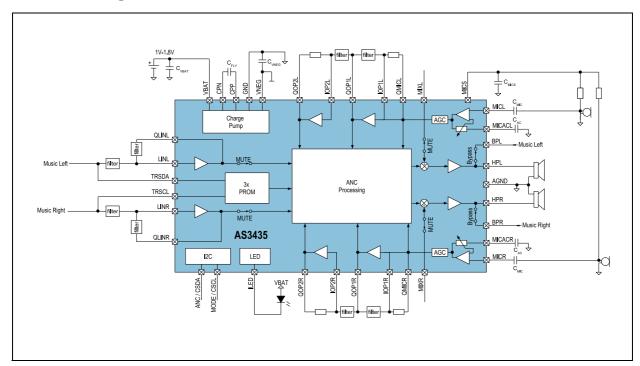
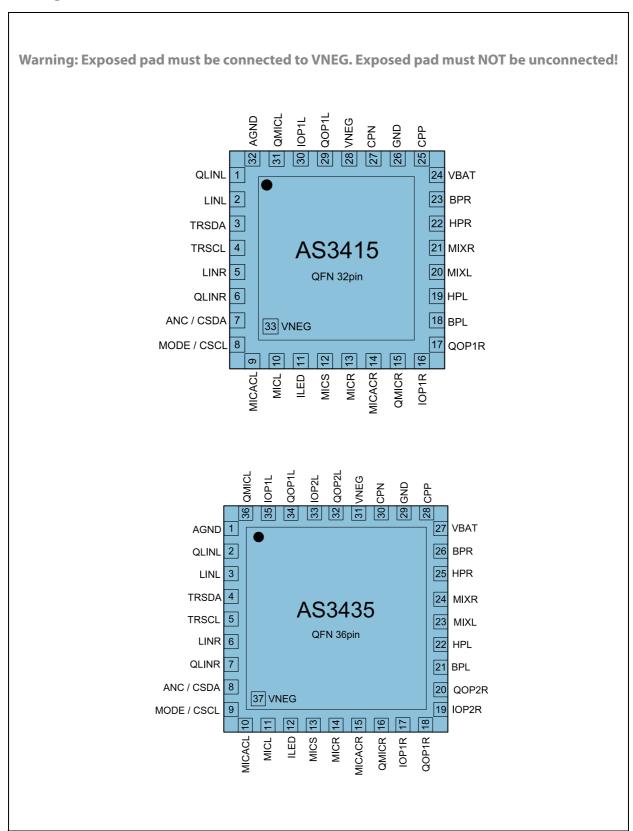



Figure 3: AS3435 Block Diagram



Pin Assignment

The AS3415 and AS3435 pin assignments are described below.

Figure 4: Pin Assignments

Pin Description

The following figure shows the pin description for AS3415/35.

Figure 5: Pin Description

Pin Name	Pin Number		Din Type	Description
FIII Name	AS3435	AS3415	Pin Type	Description
AGND	1	32	ANA OUT	Analog reference ground. Do not connect this pin to power or digital ground plane.
QLINL	2	1	ANA OUT	Line input EQ gain stage output left channel.
LINL	3	2	ANA IN	Line input EQ left channel.
TRSDA	4	3	ANA IN	Clock input for production trimming. Can be connected to LINL pin to enable production trimming via 3.5mm audio jack.
TRSCL	5	4	ANA IN	Data input for production trimming. Can be connected to LINR pin to enable production trimming via 3.5mm audio jack.
LINR	6	5	ANA IN	Line input EQ right channel.
QLINR	7	6	ANA IN	Line input EQ gain stage output right channel.
ANC / CSDA	8	7	DIG IN	Serial interface data for I ² C interface and ANC control to enable/disable ANC.
MODE / CSCL	9	8	DIG IN	Serial Interface Clock for I ² C interface and control pin for power up/down and Monitor mode.
MICACL	10	9	ANA OUT	Microphone preamplifier AC coupling ground terminal. This pin requires a 10μF capacitor connected to AGND pin.
MICL	11	10	ANA IN	ANC microphone input left channel.
ILED	12	11	ANA IN	Current sink input for on-indication LED.
MICS	13	12	SUP OUT	Microphone Supply output. This pin needs an output blocking capacitor with 10μF.
MICR	14	13	ANA IN	ANC microphone preamplifier input right channel.
MICACR	15	14	ANA OUT	Microphone preamplifier AC coupling ground terminal. This pin requires a 10μF capacitor connected to AGND pin.
QMICR	16	15	ANA OUT	ANC microphone preamplifier output right channel.
IOP1R	17	16	ANA IN	ANC filter OpAmp1 input right channel.
QOP1R	18	17	ANA OUT	ANC filter OpAmp1 output right channel.

Pin Name	Pin Number		Pin Type	Description
FIII Name	AS3435	AS3415	Fill Type	Description
IOP2R	19	-	ANA IN	ANC Filter OpAmp2 input right channel.
QOP2R	20	-	ANA OUT	ANC filter OpAmp2 output right channel.
BPL	21	18	ANA IN	Left audio bypass terminal input.
HPL	22	19	ANA OUT	Headphone amplifier output left channel
MIXL	23	20	ANA IN	Headphone amplifier external summation input terminal left channel.
MIXR	24	21	ANA IN	Headphone amplifier external summation input terminal right channel.
HPR	25	22	ANA OUT	Headphone amplifier output right channel
BPR	26	23	ANA OUT	Right audio bypass terminal input.
VBAT	27	24	SUP IN	Positive supply terminal of IC.
СРР	28	25	ANA OUT	V _{NEG} charge pump flying capacitor positive terminal.
GND	29	26	GND	V _{NEG} charge pump ground terminal.
CPN	30	27	ANA OUT	V _{NEG} charge pump flying capacitor negative terminal.
VNEG	31	28	SUP OUT	V _{NEG} charge pump output. This pin must be connected to exposed pad of QFN package.
QOP2L	32	-	ANA OUT	ANC Filter OpAmp2 output left channel.
IOP2L	33	-	ANA IN	ANC Filter OpAmp2 input left channel.
QOP1L	34	29	ANA IN	Filter OpAmp1 output left channel.
IOP1L	35	30	ANA OUT	Filter OpAmp1 input left channel.
QMICL	36	31	SUP IN	ANC microphone preamplifier output left channel.
VNEG	37	33	SUP IN	Exposed Pad: Must be connected to VNEG pin 31(AS3435) or 28(AS3415).

Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated under "Operating Conditions" is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Figure 6: Absolute Maximum Ratings

Parameter	Min	Max	Units	Comments				
Reference Ground				Defined as in GND				
Supply terminals	-0.5	2.0	V	Applicable for pin VBAT				
Ground terminals	-0.5	0.5	V	Applicable for pin AGND				
Negative terminals	-2.0	0.5	V	Applicable for pins VNEG				
Charge Pump pins	V _{NEG} -0.5	V _{BAT} +0.5	V	Applicable for pins CPN and CPP				
Headphone pins	V _{NEG} -0.5	V _{BAT} +0.5	V	Applicable for pins HPR and HPL				
Analog pins	V _{NEG} -0.5	V _{BAT} +0.5	V	Applicable for pins LINL, LINR, MICL/R, HPR, HPL, QMICL/R, QLINL/R, IOPx, QOPx, CPP, CPN, TRSCL, TRSDA, MICACL, MICACR, MIXR, MIXL, BPL, BPR and ILED				
Control Pins	V _{NEG} -0.5	5	V	Applicable for pins MICS, ANC/CSDA, MODE/CSCL				
Other Pins	V _{NEG} -0.5	5	V	Applicable for pin MICS				
Input Current (latch-up immunity)	-100	100	mA	Norm: JEDEC 17				
Col	ntinuous Pov	ver Dissipati	on (T _A = +7	70°C)				
Continuous Power Dissipation	-	200	mW	PT ⁽¹⁾ for QFN32/36 package				
Electrostatic Discharge	Electrostatic Discharge							
Electrostatic Discharge HBM		± 2	kV	Norm: JEDEC JESD22-A114C				

Parameter	Min	Max	Units	Comments
Tem	perature Rai	nges and Sto	rage Cond	itions
Junction Temperature		+85	۰C	
Storage Temperature Range	-55	+125	۰C	
Humidity non-condensing	5	85	%	
Moisture Sensitive Level	3	3		Represents a max. floor life time of 168h
Package Body Temperature		260	°C	The reflow peak soldering temperature (body temperature) specified is in accordance with IPC/JEDEC J-STD-020"Moisture/Reflow Sensitivity Classification for Non-Hermetic Solid State Surface Mount Devices".

Note(s) and/or Footnote(s):

1. Depending on actual PCB layout and PCB used

Electrical Characteristics

All limits are guaranteed. The parameters with min and max values are guaranteed with production tests or SQC (Statistical Quality Control) methods.

 V_{BAT} = 1.0V to 1.8V, T_A = -20°C to +85°C. Typical values are at V_{BAT} = 1.5V, T_A = +25°C, unless otherwise specified.

Figure 7: Electrical Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit		
T _A	Ambient Temperature Range		-20		+85	°C		
		Supply Voltages	ı					
GND	Reference Ground		0		0	V		
V _{BAT}	Battery Supply	Normal operation	1.0		1.8	V		
▼ BAT	Voltage	Two wire interface operation	1.4		1.8	V		
V _{NEG}	Charge Pump Voltage		-1.8		-0.7	V		
V _{DELTA}	Difference of Ground Supplies GND, AGND	To achieve good performance, the negative supply terminals should be connected to a low impedance ground plane.	-0.1		0.1	V		
	Other pins							
V _{MICS}	Microphone Supply Voltage	MICS	0		3.7	V		
V _{ANALOG}	Analog Pins	MICACL, MICACR,LINR, LINL, MIXL, MIXR, HPR, HPL, QMICL, QMICR, QLINL, QLINR, IOPx, QOPx, BPL, BPR	V _{NEG}		V _{BAT}	V		
V _{CONTROL}	Control Pins	MODE/CSCL, ANC/CSDA	V _{NEG}		3.7	V		
V _{LED}	ILED current source	ILED	V _{NEG}		V _{BAT}	V		
V _{CP}	Charge Pump pins	CPN, CPP	V _{NEG}		V _{BAT}	V		
V _{TRIM}	Application Trim Pins	TRSCL and TRSDA	V _{NEG} -0.3 or -1.8		V _{BAT} +0.5 or 1.8	V		
V _{MIC}	Microphone Inputs	MICL and MICR	V _{NEG}		V _{BAT}	٧		
		V _{BAT} <0.8V			20	μΑ		
l _{leak}	Leakage current	V _{BAT} <0.6V			10	μΑ		

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	ı	Block Power Requirements @ 1.5V V _{BAT}				
I _{OFF}	Off mode current	MODE pin low, device switched off		1		μΑ
I _{SYS}	Reference supply current	Bias generation, oscillator, POR		0.46		mA
I _{VNEG}	V _{NEG} Charge Pump			0.36		mA
l	Lineln gain stage	No signal, stereo, normal mode		1.4		mA
I _{LIN}	current	No signal, stereo, ECO mode		1		mA
I _{MIC}	Mic gain stage	No signal, stereo, normal mode		1.5		mA
MIC	current	No signal, stereo, ECO mode		1.1		mA
I _{HP}	Headphone stage	No signal, normal mode		2.4		mA
'HP	current	No signal, ECO mode		2		mA
I _{MICS}	MICS charge pump current	No load		400		μΑ
Lan		OP1L and OP1R enabled, normal mode		1.4		mA
I _{OP1}	OP1 supply current	OP1L and OP1R enabled, ECO mode		1		mA
I _{OP2}	OP2 supply current	OP2L and OP2R enabled, normal mode		1.4		mA
IOP2	Or 2 supply current	OP2L and OP2R enabled, ECO mode		1		mA
		Typical System Power Consumption				
P _{FF}	Typical power consumption feed forward application	OP1L, OP1R enabled OP2L, OP2R disabled 500µA microphone load ILED disabled		13.5		mW
P _{FF_ECO}	Typical power consumption feed forward application in ECO mode	All blocks in ECO mode OP1L, OP1R enabled OP2L, OP2R disabled 500µA microphone load ILED disabled		10.5		mW
P _{FB}	Typical power consumption feed forward application	OP1L, OP1R enabled OP2L, OP2R enabled 500μA microphone load ILED disabled		15.5		mW
P _{FB_ECO}	Typical power consumption feedback application in ECO mode	All blocks in ECO mode OP1L, OP1R enabled OP2L, OP2R enabled 500µA microphone load ILED disabled		13		mW

Detailed Description

This section provides a detailed description of the device related components.

Audio Line Input

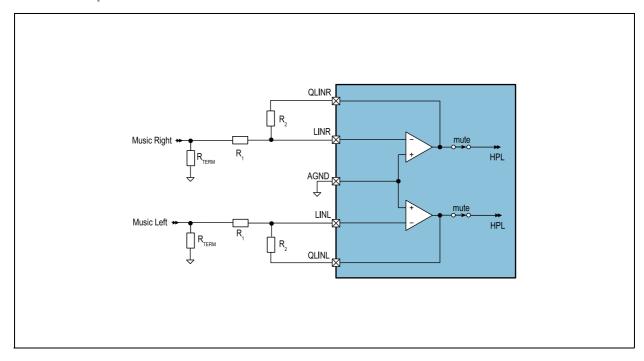
The chip features one stereo line input for music playback. Due to the fact that the line input gain stage operates as an inverting amplifier, with access to the negative input pin and the output pin, the gain can be freely configured. In monitor mode the line inputs can also be muted in order to interrupt the music playback and increase speech intelligibility.

Besides setting the gain with a resistor network, it is also possible to do simple EQ functions for sound enhancement. The EQ function can also be used to compensate for low frequency bass losses in ANC headset with a feed-back topology. For feed-forward headsets it can be used for sound enhancement to compensate for example a lack of bass because of physical design constraints of a headset.

Line Input Gain Setting

The line input gain can be configured with two external resistors, R_1 and R_2 , per channel as shown in Figure 8. The gain can be calculated with the following formula:

$$A_{Line} = 20 \cdot \log \frac{R_2}{R_1} \dots [\mathsf{dB}]$$


The resistors R_1 and R_2 should be in the range from $1k\Omega$ to $100k\Omega$. If the application requires a gain of +6dB the resistor value can be calculated as follows:

$$R_2 = R_1 \cdot 10^{\frac{A_{Line}}{20}} = 10k\Omega \cdot 10^{\frac{6}{20}} = 20k\Omega$$

For this example, a resistor value for R $_1$ was defined as $10k\Omega$ This +6dB calculation yields a value for R $_2$ of $20k\Omega$.

Figure 8: Stereo Line Input

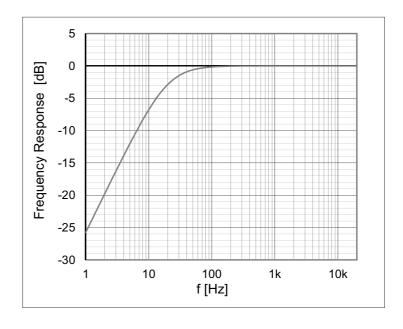
Stereo Line Input: Internal structure of the stereo line input preamplifier.

High Pass EQ Function

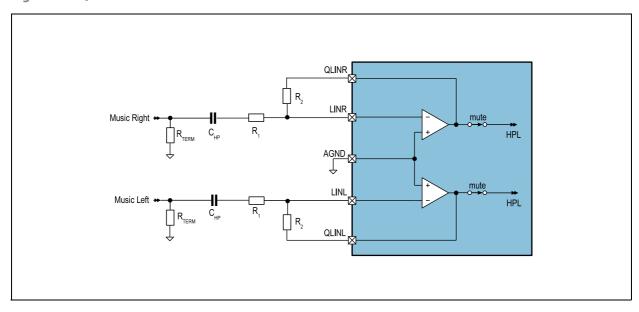
If there is a high pass function desired in an application, to block very low frequencies that could harm the speaker, or eliminate little offset voltages a simple capacitor C_{HP} could do this function. The implementation is shown in Figure 10. The correct capacitor value for the desired cut-off frequency can be calculated with the following formula:

$$C_{HP} = \frac{1}{2 \cdot \pi \cdot R_1 \cdot f_{cut-off}}$$

A typical cut-off frequency in an audio application is 20Hz. The resistor value of R_1 in this example is $10k\Omega.$


$$C_{HP} = \frac{1}{2 \cdot \pi \cdot 10k\Omega \cdot 20Hz} = 796nF$$

The result of the calculation is a capacitor with a value of 796nF. Because such a capacitor is not available on the market a capacitor close to the calculated value should be selected. This would be 750nF or 820nF.

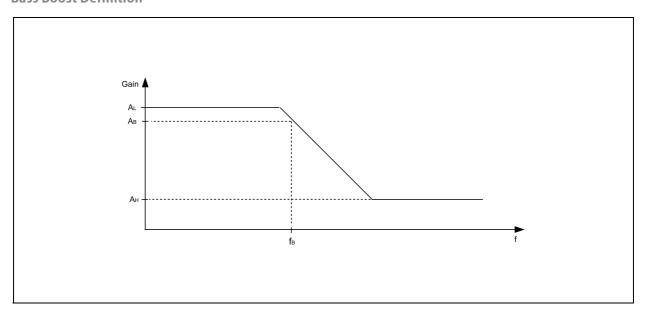

Figure 9: Frequency Response Line Input High Pass

Frequency Response Line Input High Pass: This diagram shows the frequency response of the calculated line input high pass with C_{HP} =820nF and R_1 =10kΩ.

The frequency response shown in Figure 9 shows the transfer function of the filter calculation. The cut-off frequency is close to 20Hz even though we selected a slightly different capacitor than the calculated one. Therefore it is no problem for an application to select an approximated component value.

Figure 10: High Pass EQ Circuit

Stereo Line Input: This figure shows the circuit diagram for the line input high pass EQ circuit.

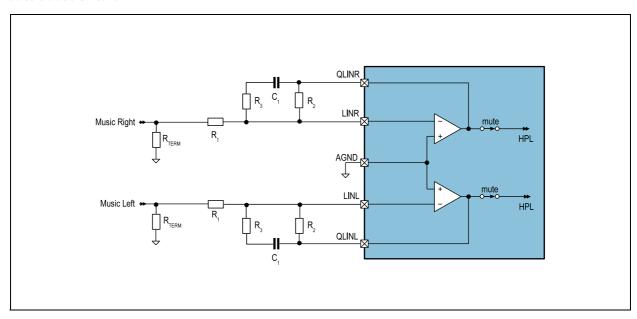

Complex EQ Filtering: It is also possible to do even more

It is also possible to do even more complex EQ filtering than is shown in the example with the integrated EQ amplifier. For details please contact our local support team.

Figure 11: Bass Boost Definition

Bass Boost EQ Function

Some applications may require low frequency compensation. This function can either help to compensate low frequency loses due to an ANC feedback circuit or just to help compensate for a lack of low frequency presence in a headset. In order to amplify low frequencies there are three parameters that can be selected by the design engineer. These are shown in Figure 11 below.



Bass Boost Definition: This figure shows the typical shape of a bass boost transfer function with the key parameters for the definition of it.

The first parameter is the desired gain level at the lower frequencies. This parameter is called A_L and defines the gain below the defined cut-off frequency. The second parameter is A_H . This defines the gain at the higher frequencies. The boost frequency, f_B , defines the attenuation at which the low frequency starts to roll off. The design engineer can define the desired attenuation level at the boost frequency. Depending on the overall gain distribution of the system the boost frequency is not the same as the cut off frequency with 3dB attenuation. The application circuit of the bass boost function is shown in Figure 12 below.

Figure 12: Bass Boost Circuit

Bass Boost Definition: This figure shows the circuit diagram for the line input bass boost EQ circuit.

The component values for A_L can be calculated with the following formula:

$$A_L = \frac{R_2}{R_1}...[\mathsf{dB}]$$

The component values for A_H can be calculated with the following formula:

$$A_H = \frac{R_2 \cdot R_3}{R_1 \cdot (R_2 + R_3)} ... [dB]$$

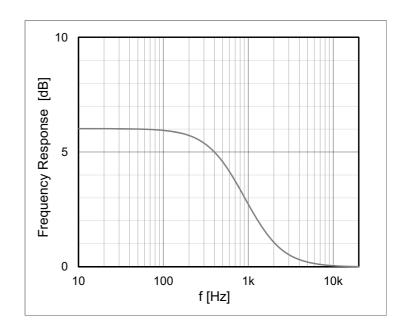
An example for a typical bass boost is 6dB gain at the low frequency. If we select for R_1 a value of $10k\Omega$ we can calculate R_2 as follows:

$$R_2 = 10^{\frac{A_L}{20}} \cdot R_1 = 10^{\frac{6}{20}} \cdot 10k\Omega = 20k\Omega$$

In this example, the gain for the higher frequency should be 0dB.This allows us to calculate R3 as follows:

$$R_{3} = \frac{-A_{H} \cdot R_{1} \cdot R_{2}}{A_{H} \cdot R_{1} - R_{2}} = \frac{-10^{\frac{0}{20}} \cdot 10k\Omega \cdot 20k\Omega}{0^{\frac{0}{20}} \cdot 10k\Omega - 20k\Omega} = 20k\Omega$$

The last component to be calculated for the example is capacitor C_1 . This capacitor defines the cut-off frequency of the bass boost circuit. The desired gain level $A_{\text{cut-off}}$ at the cut-off frequency can be defined by the engineer together with the frequency. In this example, we select a cut-off frequency of 400Hz and a gain level of 5dB. Thus we get an attenuation of 1dB at a frequency of 400Hz. The necessary capacitor can be calculated with the following formula:



$$\begin{split} C_1 &= \frac{\sqrt{R_2^2 - A_B^2 \cdot R_1^2}}{\sqrt{A_B^2 \cdot R_1^2 \cdot (R_2 + R_3)^2 \cdot (2 \cdot \pi \cdot f_B)^2 - R_2^2 \cdot R_3^2 \cdot (2 \cdot \pi \cdot f_B)^2}} \\ C_1 &= \frac{\sqrt{20000^2 - 10^{\frac{5}{20}} \cdot 10000^2}}{\sqrt{\left(10^{\frac{5}{20}}\right)^2 \cdot 10000^2 \cdot (20000 + 20000)^2 \cdot 2 \cdot \pi \cdot 400 - 20000^2 \cdot 20000^2 \cdot 2 \cdot \pi \cdot 400}} = 6.3nF \end{split}$$

The Spice simulation for the calculated resistor and capacitor values is shown in Figure 13. The simulation shows exactly at 400Hz an attenuation of 1dB.

Figure 13: Frequency Response Bass Boost

Frequency Response Bass Boost: The diagram shows the Spice simulation result of the bass boost calculation example done in this chapter with C_1 =6.2nF, R_1 =10k, R_2 =20k Ω and R_3 =20k Ω .

Parameter

 $V_{BAT}{=}1.5V,$ $T_{A}{=}$ 25°C, $R_{1}{=}1k\Omega,$ $R_{2}{=}1k\Omega$ unless otherwise specified

Figure 14: Line Input Parameter

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{LIN}	Input Signal Level	Gain=0dB		0.9* V _{BAT}		V _{PEAK}
		10k Ω load, Gain = 0dB, V _{BAT} =1.8V, High Quality Mode		121		dB
		10k Ω load, Gain = 0dB, V _{BAT} =1.5V High Quality Mode		119		dB
SNR	Signal to Noise Ratio	10k Ω load, Gain = 0dB, V _{BAT} =1.0V High Quality Mode		115		dB
Sivit	Signal to Noise Ratio	10k Ω load, Gain = 0dB, V _{BAT} =1.8V, ECO Mode		115		dB
		10k Ω load, Gain = 0dB, V _{BAT} =1.5V, ECO Mode		113		dB
		10k Ω load, Gain = 0dB, V _{BAT} =1.0V, ECO Mode		109		dB
	Block Current	No load, Gain = 0dB, V _{BAT} =1.8V, High Quality Mode		1.4		mA
		No load, Gain = 0dB, V _{BAT} =1.5V, High Quality Mode		1.3		mA
l		No load, Gain = 0dB, V _{BAT} =1.0V, High Quality Mode		1.1		mA
I _{LIN}	Consumption	No load, Gain = 0dB, V _{BAT} =1.8V, ECO Mode		1.1		mA
		No load, Gain = 0dB, V _{BAT} =1.5V, ECO Mode		950		μΑ
		No load, Gain = 0dB, V _{BAT} =1.0V, ECO Mode		700		μΑ
V	Input Referred Noise	High Quality Mode		900		nV
V _{NOISE-A}	Floor A-Weighted	ECO Mode		1.9		μV

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{offset}	DC offset voltage				2	mV
C _L	Load Capacitance				100	pF
R _L	Load Impedance		1			kΩ

Line Input Parameter: This table shows the detailed electrical characteristics of the line input gain stage like maximum input signal level and audio parameter like SNR.

Figure 15: Line Input Frequency Response

Line Input Frequency Response: The diagram shows the frequency response measurement of the line input amplifier with 0dB gain and V_{BAT} =1.5V, R_1 =10k Ω and R_2 =10k Ω . The solid line represents the default high quality mode and the dashed line shows the frequency response in ECO mode.

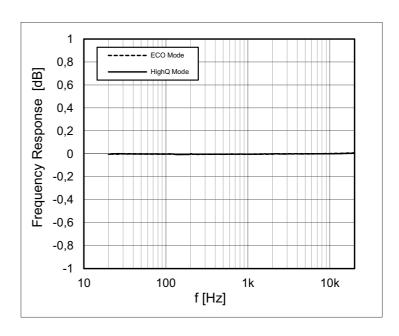


Figure 16: Line Input THD+N vs. Frequency V_{BAT} = 1V

Line Input THD+N vs. Frequency: The diagram shows the A-weighted THD+N measurement of the line input amplifier with 0dB gain and V_{BAT} =1.0V, R_1 =10k Ω and R_2 =10k Ω . The solid line represents the default high quality mode and the dashed line shows the frequency response in ECO mode.

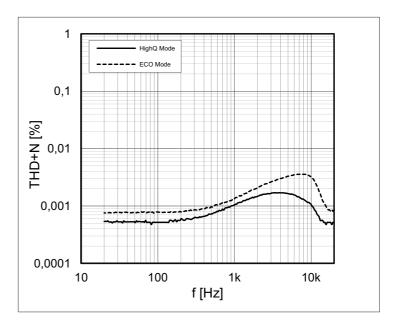


Figure 17: Line Input THD+N vs. Frequency V_{BAT} = 1.5V

Line Input THD+N vs. Frequency: The diagram shows the A-weighted THD+N measurement of the line input amplifier with 0dB gain and V_{BAT} =1.5V, R_1 =10k Ω and R_2 =10k Ω . The solid line represents the default high quality mode and the dashed line shows the frequency response in ECO mode.

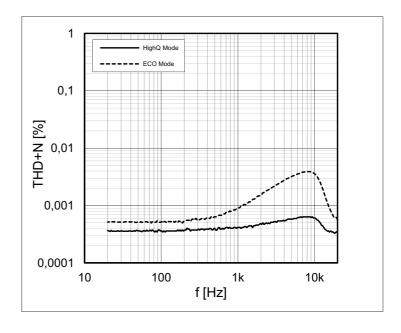
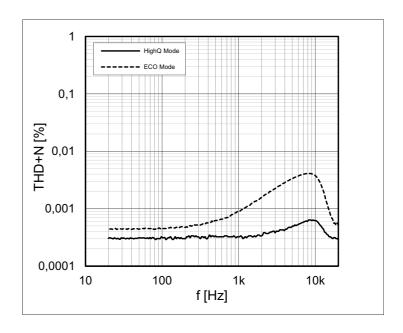
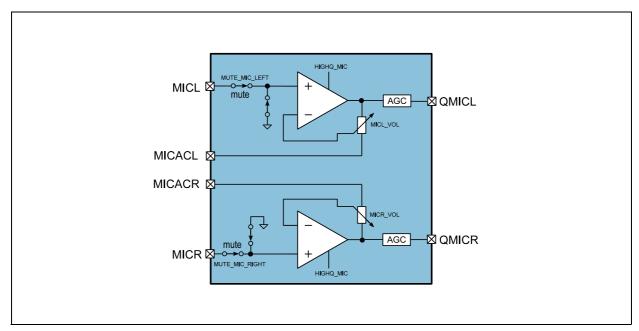



Figure 18: Line Input THD+N vs. Frequency V_{BAT} = 1.8V

Line Input THD+N vs. Frequency: The diagram shows the A-weighted THD+N measurement of the line input amplifier with 0dB gain and V_{BAT} =1.8V, R_1 =10k Ω and R_2 =10k Ω . The solid line represents the default high quality mode and the dashed line shows the frequency response in ECO mode.

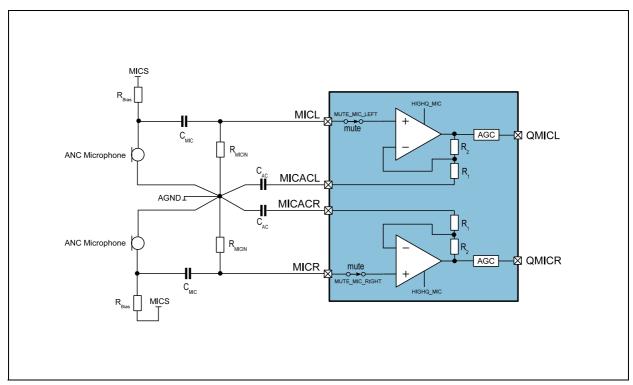


Microphone Inputs

The AS3415/35 offers two low noise microphone inputs with full digital control and a dedicated DC offset cancellation pin for each microphone input. In total each gain stage offers up to 63 gain steps of 0.5dB resulting in a gain range from 0dB to +31dB. The microphone gain is stored digitally during production, in OTP on the ANC chipset. Besides the standard microphone gain register for left and right channel, the chip also features two additional microphone gain registers for monitor mode. Thus, in monitor mode, a completely different gain setting for left and right microphone can be selected to implement voice filter functions to amplify the speech band for better intelligibility.

Figure 19: Stereo Microphone Input

Stereo Microphone Input: This diagram shows the internal structure of the stereo microphone preamplifier including the mute switch as well as the automatic gain control (AGC).


To avoid unwanted start-up pop noise, a soft-start function is implemented for an automatic gain ramping of the device. In case of an overload condition on the microphone input (e.g. high sound pressure level), an internal state machine reduces the microphone gain automatically. For some designs it might be useful to switch off this feature. Especially in feed-back systems very often infrasound can cause an overload condition of the microphone preamplifier which results in low frequency noise which can be avoided by disabling the AGC.

Input Capacitor Selection

The microphone preamplifier needs a bias resistor (R_{Bias}) per channel as well as DC blocking capacitors (C_{MIC}). The capacitors C_{AC} are DC blocking capacitors to avoid DC amplification of the non-inverting microphone preamplifier. This capacitor has an influence on the frequency response because the internal feedback resistors create a high pass filter. The typical application circuit is shown in Figure 20 with all necessary components.

Figure 20: Microphone Capacitor Selection Circuit

Microphone Capacitor Selection Circuit: This diagram shows a typical microphone application circuit with all necessary components to operate the amplifier.

The corner frequency of this high pass filter is defined with the capacitor C_{AC} and the gain of the headphone amplifier.

Figure 21 shows an overview of typical cut-off frequencies with

different microphone gain settings.

Figure 21: Microphone Cut-Off Frequency Overview

Microphone Gain	R ₁	R ₂	F _{cut-off}
0dB	22.2kΩ	0Ω	1.7Hz
3dB	15716Ω	6484Ω	1.9Hz
6dB	11126Ω	11074Ω	2.2Hz
9dB	7877Ω	14323Ω	2.7Hz
12dB	5576Ω	16623Ω	3.5Hz
15dB	3948Ω	18252Ω	4.5Hz
18dB	2795Ω	19405Ω	6.1Hz
21dB	1979Ω	20221Ω	8.4Hz
24dB	1400Ω	20800Ω	11.5Hz
27dB	992Ω	21208Ω	16.3Hz
30dB	702Ω	21498Ω	22.7Hz

Microphone Cut-Off frequency overview: This table shows an overview of the different cut-off frequencies with $C_{AC}=10\mu F$, $C_{MIC}=2.2\mu F$ and $R_{MICIN}=22k\Omega$ of the microphone preamplifier.

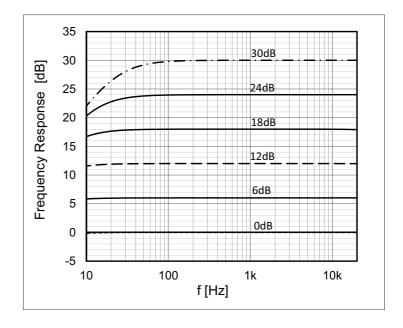
In the cut-off frequency overview, capacitor C_{AC} was defined as $10\mu F$ which results in a rather low cut-off frequency for best ANC filter design. If a different capacitor value is desired in the application, the following formula defines the transfer function of the high pass circuit of the microphone preamplifier:

Filter Simulations:

It is important when doing the ANC filter simulations to include all microphone filter components to incorporate the gain and phase influence of these components.

$$|A| = \frac{\sqrt{4 \cdot C_{AC}^2 \cdot f^2 \cdot (R_1 + R_2)^2 \cdot \pi^2 + 1}}{\sqrt{4 \cdot C_{AC}^2 \cdot f^2 \cdot R_1^2 \cdot \pi^2 + 1}}$$

The simplified transfer function does not include the high pass filter defined by $C_{\mbox{\scriptsize MIC}}$ and $R_{\mbox{\scriptsize MICIN}}.$ With the recommended values of 2.2µF for $C_{\mbox{\scriptsize MIC}}$ and 22k Ω for $R_{\mbox{\scriptsize MICIN}}$ this filter can be neglected because of the very low cut-off frequency of 1.5Hz. The cut-off frequency for this filter can be calculated with the following formula:


$$f_{cut-off} = \frac{1}{2 \cdot \pi \cdot R_{MICIN} \cdot C_{MIC}}$$

The simulated frequency response for the microphone preamplifier with the recommended component values is shown in Figure 22.

Figure 22: Simulated Microphone Frequency Response

Microphone Frequency Response: This graph shows the frequency response of the microphone preamplifier with different gain settings with C_{AC} =10 μ F, C_{MIC} =2.2 μ F and R_{MICIN} =22 $k\Omega$.

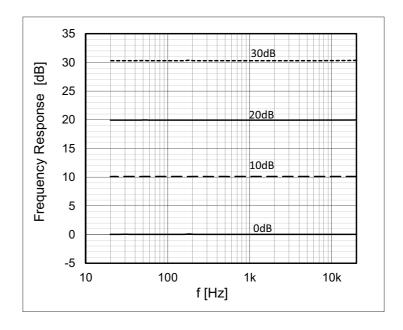
In application with PCB space limitations it is also possible to remove the capacitors C_{AC} and connect MICACL and MICACR pins directly to A_{GND} . In this configuration AC coupling of the QMICR and QMICL signals is recommended.

Parameter

 $V_{BAT}=1.5V,$ $T_A=25^{\circ}C$, $C_{AC}=10\mu F,$ $C_{MIC}=2.2\mu F$ and $R_{MICIN}=22k\Omega$ unless otherwise specified.

Figure 23: Microphone Parameter

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{MICIN} 0		A _{MIC} = 10dB		80		mV _{RMS}
V _{MICIN} 1	Input Signal Level	A _{MIC} = 20dB		40		mV _{RMS}
V _{MICIN} 2		A _{MIC} = 30dB		10		mV _{RMS}
		0dB gain, High quality mode, AGC off		115		dB
		10dB gain, High quality mode, AGC off		108		dB
SNR	Signal to Noise Ratio	20dB gain, High quality mode, AGC off		98		dB
		0dB gain, ECO mode, AGC off		113		dB
		10dB gain, ECO mode, AGC off		105		dB
		20dB gain, ECO mode, AGC off		96		dB
	A-Weighted Output Noise Floor	0dB gain, 20Hz – 20kHz bandwidth, High quality		1.3		μV
		10dB gain, 20Hz – 20kHz bandwidth, High quality		4.2		μV
V _{NOISE-A}		20dB gain, 20Hz – 20kHz bandwidth, High quality		13		μV
NOISE-A		0dB gain, 20Hz – 20kHz bandwidth, ECO mode		1.6		μV
		10dB gain, 20Hz – 20kHz bandwidth, ECO mode		5.5		μV
		20dB gain, 20Hz – 20kHz bandwidth, ECO mode		16.5		μV
l	Block Current	No load, normal mode		1.4		mA
I _{MIC}	Consumption	No load, ECO mode		1		mA
	Programmable Gain	Discrete logarithmic gain steps	0		+31	dB
A _{MIC}	Gain Step Size			0.5		dB
	Gain Step Precision				0.2	dB
Δ_{AMIC}	Gain Ramp Rate	V _{PEAK} related to V _{BAT} or V _{NEG}		1		ms/step



Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{ATTACK}	Limiter Activation Level	V _{PEAK} related to V _{BAT} or V _{NEG} 64 @ 0.5dB		0.40		1
V _{DECAY}	Limiter Release Level			0.31		1
A _{MICLIMIT}	Limiter Minimum Gain			0		dB
t _{ATTACK}	Limiter Attack Time			5		μs/step
t _{DECAY}	Limiter Decay Time			1		ms/step

Microphone Parameter: This table shows the detailed electrical characteristics of the microphone preamplifier gain stage.

Figure 24: Microphone Frequency Response

Microphone Frequency Response: This graph shows the frequency response of the microphone preamplifier with different gain settings without R_{MICIN} resistor, C_{AC} capacitor (MICACx pin connected to A_{GND}) and C_{MIC} =2.2 μ F.

