imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

AS3930 Single Channel Low Frequency Wakeup Receiver

General Description

The AS3930 is a single-channel low power ASK receiver that is able to generate a wake-up upon detection of a data signal which uses a LF carrier frequency between 110 - 150 kHz. The integrated correlator can be used for detection of a programmable 16-bit wake-up pattern.

The AS3930 provides a digital RSSI value, it supports a programmable data rate. The AS3930 offers a real-time clock (RTC), which is either derived from a crystal oscillator or the internal RC oscillator.

The programmable features of AS3930 enable to optimize its settings for achieving a longer distance while retaining a reliable wake-up generation. The sensitivity level of AS3930 can be adjusted in presence of a strong field or in noisy environments. The device is available in a 16-pin TSSOP and a 16-LD QFN (4x4) package.

Ordering Information and Content Guide appear at end of datasheet.

Key Benefits & Features

The benefits and features of AS3930, Single Channel Low Frequency Wakeup Receiver are listed below:

Figure 1: Added Value of Using AS3930

Benefits	Features		
Enables low power active tags	Single channel ASK wake-up receiver		
Selectable carrier frequency	Carrier frequency range 110 – 150 kHz		
Highly resistant to false wake-ups	16-bit programmable wake-up pattern		
Improved immunity to false wake-ups	Supporting doubling of wake-up pattern		
Allows frequency only detection	Wake-up without pattern detection selectable		
Improved range with best-in-class sensitivity	Wake-up sensitivity 100µVRMS (typ.)		
Adjustable range	Sensitivity level adjustable		
Provides tracking of false wake-ups	False wake-up counter		
Ensures wake-up in a noise environment	Periodical forced wake-up supported (1s – 2h)		
Extended battery life	Current consumption in listening mode 1.37 µA (typ.)		
Flexible clock configuration	RTC based 32 kHz XTAL, RC-OSC, or external clock		

Benefits	Features
Operates from a 3V battery	Operating supply range $2.4V - 3.6V$ (TA = $25^{\circ}C$)
Industrial temperature range	Operation temperature range -40°C to +85°C

Applications

The AS3930, Single Channel Low Frequency Wakeup Receiver is ideal for Active RFID tags, real-time location systems, operator identification, access control, and wireless sensors.

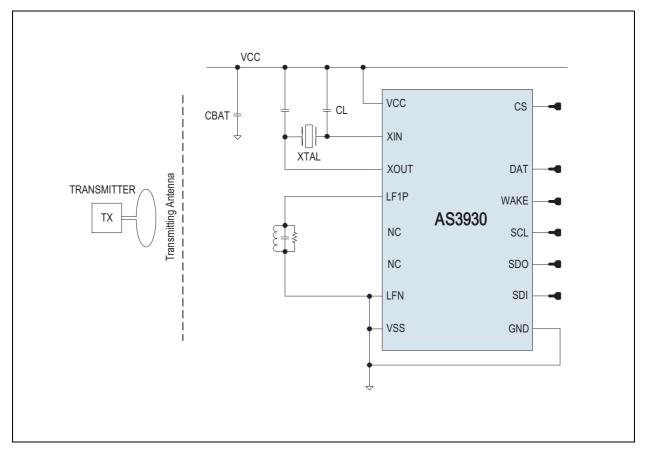
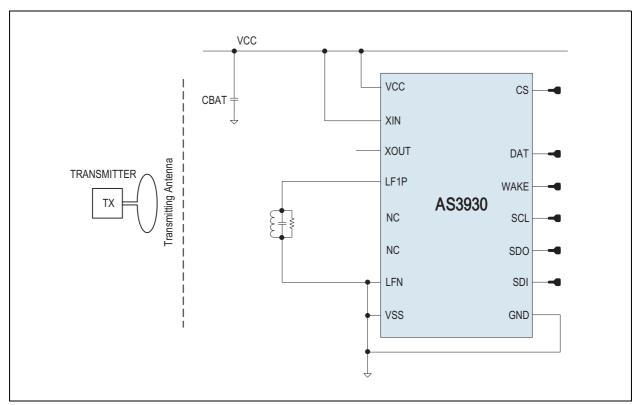
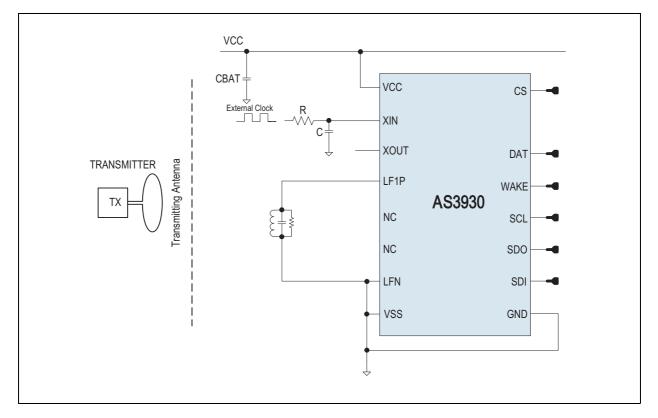
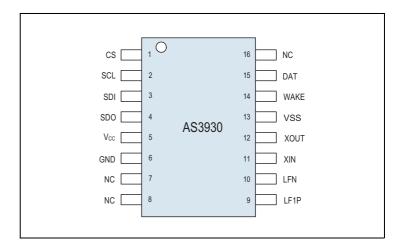




Figure 3: AS3930 Typical Application Diagram without Crystal Oscillator

Figure 4:

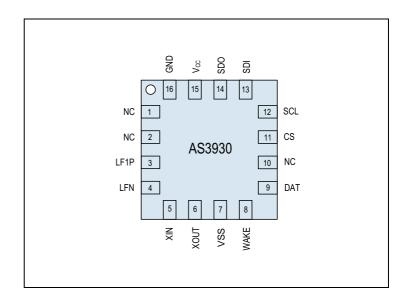
AS3930 Typical Application Diagram with Clock from External Source



Pin Assignments

16-pin TSSOP

Figure 5: Pin Diagram (Top View)


Figure 6: Pin Description

Pin Number	Pin Name	Pin Type	Description
1	CS		Chip select
2	SCL	Digital input	SDI interface clock
3	SDI		SDI data input
4	SDO	Digital output / tristate	SDI data output (tristate when CS is low)
5	V _{CC}	Supply pad	Positive supply voltage
6	GND	Supply pad	Negative supply voltage
7	NC		Not Connected
8	NC	-	Not connected
9	LF1P		Input antenna
10	LFN	Apples 1/O	Antenna ground
11	XIN	Analog I/O	Crystal oscillator input
12	XOUT		Crystal oscillator output
13	V _{SS}	Supply pad	Substrate
14	WAKE	Digital output	Wake-up output IRQ
15	DAT	Digital output	Data output
16	NC	-	Not connected

QFN 4x4 16 LD

Figure 7: Pin Diagram (Top View)

Figure 8: Pin Description

Pin Number	Pin Name	Pin Type	Description
1	NC	-	Not connected
2	NC	-	Not connected
3	LF1P		Input antenna
4	LFN		Antenna ground
5	XIN	Analog I/O	Crystal oscillator input
6	XOUT		Crystal oscillator output
7	V _{SS}	Supply pad	Substrate
8	WAKE	Digital output	Wake-up output IRQ
9	DAT	Digital output	Data output
10	NC	-	Not connected
11	CS		Chip select
12	SCL	Digital input	SDI interface clock
13	SDI		SDI data input
14	SDO	Digital output / tristate	SDI data output (tristate when CS is low)
15	V _{CC}	Supply pad	Positive supply voltage
16	GND	Supply pad	Negative supply voltage

Absolute Maximum Ratings

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated in Electrical Characteristics is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Figure 9: Absolute Maximum Ratings

Parameter	Min	Max	Unit	Note				
	Ele	ectrical Pa	rameters					
DC supply voltage (V _{DD})	-0.5	5	V					
Input pin voltage (V _{IN})	-0.5	5	V					
Input current (latch up immunity) (I _{SOURCE})	-100	100	mA	Norm: Jedec 78				
Electrostatic Discharge								
Electrostatic discharge (ESD)	±2		kV	Norm: MIL 883 E method 3015 (HBM)				
	Continuous Power Dissipation							
Total power dissipation (all supplies and outputs) (P _t)		0.07	mW					
Tem	perature R	langes an	d Storage	Conditions				
Storage temperature (T _{strg})	-65	150	°C					
Package body temperature (T _{body})		260	°C	Norm: IPC/JEDEC J-STD-020 The reflow peak soldering temperature (body temperature) is specified according IPC/JEDEC J-STD-020 "Moisture/Reflow Sensitivity Classification for Non-hermetic Solid State Surface Mount Devices".				
Humidity non-condensing	5	85	%					
Moisture Sensitivity Level (MSL)	3			Represents a maximum floor life time of 168h				

Electrical Characteristics

Figure 10: Electrical Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit					
	Operating Conditions										
V _{DD}	Positive supply voltage		2.4		3.6	V					
V _{SS}	Negative supply voltage		0		0	V					
T _{AMB}	Ambient temperature		-40		85	°C					
	DC/AC Characteristics for Digital Inputs and Outputs										
		CMOS Input									
V _{IH}	High level input voltage		0.58* V _{DD}	0.7* V _{DD}	0.83* V _{DD}	V					
V _{IL}	Low level input voltage		0.125* V _{DD}	0.2* V _{DD}	0.3* V _{DD}	V					
I _{LEAK}	Input leakage current				100	nA					
		CMOS Output									
V _{OH}	High level output voltage	With a load current of 1mA	V _{DD} - 0.4			V					
V _{OL}	Low level output voltage				V _{SS} + 0.4	V					
CL	Capacitive load	For a clock frequency of 1 MHz			400	pF					
		Tristate CMOS Output			1						
V _{OH}	High level output voltage	With a load current of 1mA	V _{DD} - 0.4			V					
V _{OL}	Low level output voltage				V _{SS} + 0.4	V					
I _{OZ}	Tristate leakage current	To $V_{\mbox{\scriptsize DD}}$ and $V_{\mbox{\scriptsize SS}}$			100	nA					

Figure 11: Electrical System Specifications

Symbol	Parameter	Conditions	Min	Тур	Max	Unit			
		Input Characteristics							
R _{IN}	Input Impedance	In case no antenna damper is set (R1<4>=0)		2		MΩ			
Fmin	Minimum Input Frequency			110		kHz			
Fmax	Maximum Input Frequency			150		kHz			
	Current Consumption								
IPWD	Power Down Mode			400		nA			
ICHRC	Current Consumption in standard listening mode with channel active all the time and RC-oscillator as RTC			2.7		μΑ			
	Current Consumption	11% Duty Cycle		1.37					
ICHOORC	in ON/OFF mode and RC-oscillator as RTC	50% Duty Cycle		2		μA			
ICHXT	Current Consumption in standard listening mode and crystal oscillator as RTC			3.5	5.9	μΑ			
IDATA	Current Consumption in Preamble detection / Pattern correlation / Data receiving mode (RC-oscillator)	With 125 kHz carrier frequency and 1kbps data-rate. No load on the output pins.		5.3	9	μΑ			
		Input Sensitivity		ļ	ļ				
SENS	Input Sensitivity	With 125 kHz carrier frequency, chip in default mode, 4 half bits burst + 4 symbols preamble and single preamble detection		100		μVrms			
Channel Settling Time									
TSAMP	Amplifier settling time			250		μs			
	1	Crystal Oscillator	1	<u> </u>	<u> </u>				
FXTAL	Frequency	Countral allowed by the		32.768		kHz			
TXTAL	Start-up Time	Crystal dependent			1	S			
IXTAL	Current consumption			1		μA			

Symbol	Parameter	Conditions	Min	Тур	Max	Unit				
	External Clock Source									
IEXTCL	Current consumption		1		μA					
	RC Oscillator ⁽¹⁾									
FRCNCAL		If no calibration is performed	27	32.768	42	kHz				
FRCCAL32	Frequency	If calibration with 32.768 kHz reference signal is performed	31	32.768	34.5	kHz				
FRCCALMAX		Maximum achievable frequency after calibration		35		kHz				
FRCCALMIN		Minimum achievable frequency after calibration		30		kHz				
TRC	Start-up time	From RC enable (R1<0> = 0)			1	s				
TCALRC	Calibration time				65	Periods of reference clock				
IRC	Current consumption			200		nA				

Note(s) and/or Footnote(s):

1. RC calibration is only successful after start-up is completed.

Typical Operating Characteristics

Figure 12: Sensitivity over Voltage and Temperature

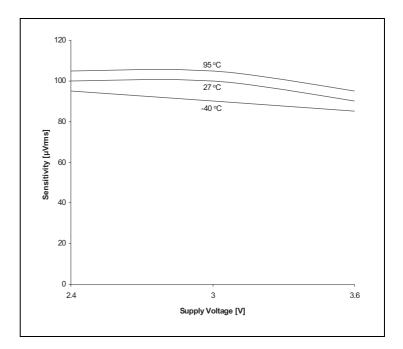


Figure 13: Sensitivity over RSSI

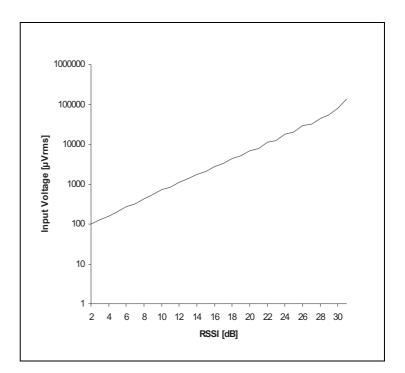
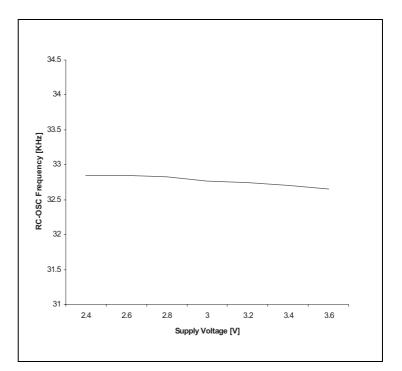
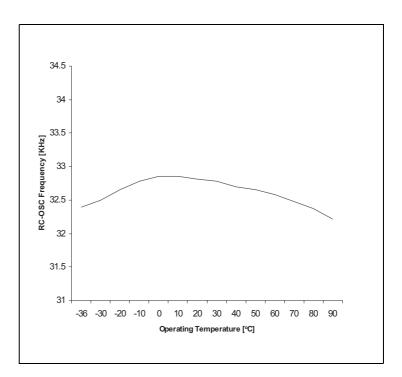
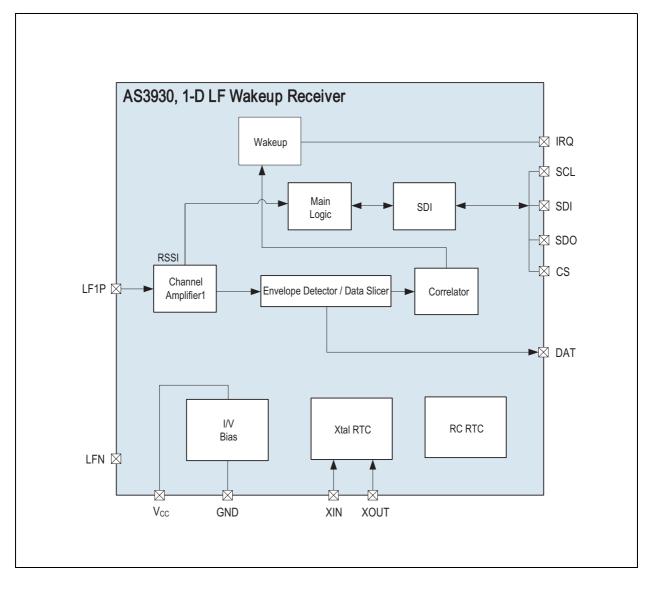




Figure 14: RC-Oscillator Frequency over Voltage (calibr.)


Detailed Description

The AS3930 is a one-dimensional low power low-frequency wake-up receiver. The AS3930 is capable of detecting the presence of an inductive coupled carrier and extract the envelope of the ON-OFF-Keying (OOK) modulated carrier. In case the carrier is Manchester coded, then the clock is recovered from the transmitted signal and the data can be correlated with a programmed pattern. If the detected pattern corresponds to the stored one, then a wake-up signal (IRQ) is risen up. The pattern correlation can be bypassed in which case the wake-up detection is based only on the frequency detection.

The AS3930 is made up of a single receiving channel, one envelop detector, one data correlator, 8 programmable registers with the main logic and a real time clock.

The digital logic can be accessed by an SDI. The real time clock can be based on a crystal or on an internal RC. If the internal RC oscillator is used, a calibration procedure can be performed to improve its accuracy.

Figure 16: Block Diagram of LF Wake-up Receiver AS3930

Page 12 Document Feedback AS3930 needs the following external components:

- Power supply capacitor CBAT 100 nF.
- 32.768 kHz crystal with its two pulling capacitors XTAL and CL - (it is possible to omit these components if the internal RC oscillator is used instead of the crystal oscillator).
- Input LC resonator.

In case the internal RC-oscillator is used (no crystal oscillator is mounted), the pin XIN has to be connected to the supply, while pin XOUT should stay floating. Application diagrams with and without crystal are shown in Figure 2 and Figure 3.

Operating Modes

Power Down Mode

In Power Down Mode AS3930 is completely switched OFF. The typical current consumption is 400 nA.

Listening Mode

In listening mode only the channel amplifier and the RTC are running. In this mode the system detects the presence of a carrier. In case the carrier is detected, the RSSI can be displayed.

In this mode it is possible to distinguish the following three sub modes:

Standard Listening Mode

The channel amplifier that is capable of detecting the presence of the carrier frequency, is active all the time.

ON/OFF Mode (Low Power mode)

The channel amplifier is active for one millisecond after which it is switched OFF. The OFF-time is programmable (see R4<7:6>).

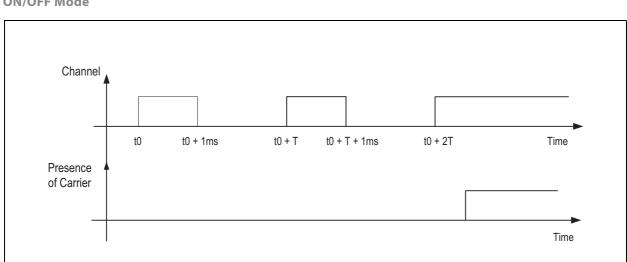


Figure 17: ON/OFF Mode

Further, for both sub modes, it is possible to enable a feature called Artificial Wake-up. If the Artificial Wake-up is enabled, then the AS3930 produces an interrupt after a certain time regardless of whether any activity is detected on the input. The period of the Artificial Wake-up is defined in the register R8<2:0>. The user can distinguish between Artificial Wake-up and Wake-up based on the field detection (frequency or pattern detection) since the Artificial Wake-up interrupt lasts only 128µs. With this interrupt the microcontroller (µC) can get feedback on the surrounding environment (e.g. read the false wake-up register R13<7:0>) and/or take actions in order to change the setup.

Preamble Detection / Pattern Correlation

The preamble detection and pattern correlation are only considered for the wake-up when the data correlator function is enabled (see R1<1>). The correlator searches first for preamble frequency (constant frequency of Manchester clock defined according to bit-rate transmission, see Figure 36) and then for data pattern.

If the pattern is matched, then the wake-up interrupt is displayed on the WAKE output and the chip goes in data receiving mode. If the pattern fails, then the internal wake-up is terminated and no IRQ is produced.

Data Receiving

After a successful wake-up the chip enters the data receiving mode. In this mode the chip can be retained a normal OOK receiver. The received data are streamed out on the pin DAT. It is possible to put the chip back to listening mode either with a direct command (CLEAR_WAKE see Figure 24) or by using the timeout feature. This feature automatically sets the chip back to listening mode after a certain time R7<7:5>.

System and Block Specification

Main Logic and SDI

	7	6	5	4	3	2	1	0
R0	N.	A	ON_OFF		Reserved		EN_A	PWD
R1	ABS_HY	AGC_TLIM	AGC_UD	ATT_ON	N.A.	EN_PAT2	EN_WPAT	EN_RTC
R2	S_ABSH	W_PAT_	_T<1:0>		Reserved		S_WU1	I<1:0>
R3	HY_20m	HY_POS		FS_SLC<2:0>			FS_ENV<2:0>	
R4	T_OFF	FF<1:0> R_VAL		R_VAL<1:0> GR<3:0>				
R5	TS2<7:0>							
R6				TS1<	:7:0>			
R7		T_OUT<2:0>				T_HBIT<4:0>		
R8			N.A.				T_AUTO<2:0>	
R9	N.A.				Reserved			
R10	N.A RSSI1<4:0>							
R11	N.A							
R12	N.A							
R13	F_WAKE							

Figure 18: Register Table

Register Table Description and Default Values

Figure 19: Description and Default Values of Registers

Register	Name	Туре	Default Value	Description
R0<5>	ON_OFF	R/W	0	ON/OFF operation mode. (Duty-cycle defined in the register R4<7:6>
R0<4>	MUX_123	R/W	0	Reserved (it is not allowed to set this bit to 1)
R0<3>	Reserved		1	Reserved
R0<2>	Reserved		1	Reserved
R0<1>	EN_A	R/W	1	Channel enable
R0<0>	PWD	R/W	0	Power down
R1<7>	ABS_HY	R/W	0	Data slicer absolute reference
R1<6>	AGC_TLIM	R/W	0	AGC acting only on the first carrier burst
R1<5>	AGC_UD	R/W	1	AGC operating in both direction (up-down)
R1<4>	ATT_ON	R/W	0	Antenna damper enable
R1<3>	Reserved		0	Reserved
R1<2>	EN_PAT2	R/W	0	Double wake-up pattern correlation
R1<1>	EN_WPAT	R/W	1	Data correlation enable
R1<0>	EN_RTC	R/W	1	Crystal oscillator enable
R2<7>	S_ABSH	R/W	0	Data slicer threshold reduction
R2<6:5>	W_PAT	R/W	00	Pattern correlation tolerance (see Figure 37)
R2<4:2>	Reserved		000	Reserved
R2<1:0>	S_WU1	R/W	00	Tolerance setting for the stage wake-up (see Figure 31)
R3<7>	HY_20m	R/W	0	Data slicer hysteresis if HY_20m = 0 then comparator hysteresis = 40mV if HY_20m = 1 then comparator hysteresis = 20mV
R3<6>	HY_POS	R/W	0	Data slicer hysteresis on both edges (HY_POS = $0 \rightarrow$ hysteresis on both edges; HY_POS = $1 \rightarrow$ hysteresis only on positive edges)
R3<5:3>	FS_SCL	R/W	100	Data slicer time constant (see Figure 35)
R3<2:0>	FS_ENV	R/W	000	Envelop detector time constant (see Figure 34)

Register	Name	Туре	Default Value	Description		
				OFF time in ON/OFF	operation mode	
				T_OFF=00	1ms	
R4<7:6>	T_OFF	R/W	00	T_OFF=01	2ms	
				T_OFF=10	4ms	
				T_OFF=11	8ms	
R4<5:4>	D_RES	R/W	01	Antenna damping r	esistor (see Figure 33)	
R4<3:0>	GR	R/W	0000	Gain reduction (see	Figure 32)	
R5<7:0>	TS2	R/W	01101001	2 nd Byte of wake-up	pattern	
R6<7:0>	TS1	R/W	10010110	1 st Byte of wake-up	pattern	
R7<7:5>	T_OUT	R/W	000	Automatic time-out	(see Figure 38)	
R7<4:0>	T_HBIT	R/W	01011	Bit rate definition (s	ee Figure 36)	
				Artificial wake-up		
				T_AUTO=000	No artificial wake-up	
				T_AUTO=001	1 sec	
				T_AUTO=010	5 sec	
R8<2:0>	T_AUTO	R/W	000	T_AUTO=011	20 sec	
				T_AUTO=100	2 min	
				T_AUTO=101	15min	
				T_AUTO=110	1 hour	
				T_AUTO=111	2 hour	
R9<6:0>	Reserved		000000	Reserved		
R10<4:0>	RSSI1	R		RSSI channel		
R11<4:0>		R		N.A.		
R12<4:0>		R		N.A.		
R13<7:0>	F_WAK	R		False wake-up regis	ter	

Serial Data Interface (SDI)

This 4-wires interface is used by the Microcontroller (μ C) to program the AS3930. The maximum clock frequency of the SDI is 2MHz.

Figure 20: Serial Data Interface (SDI) pins

Name	Signal	Signal Level	Description
CS	Digital Input with pull down	CMOS	Chip Select
SDI	Digital Input with pull down	CMOS	Serial Data input for writing registers, data to transmit and/or writing addresses to select readable register
SDO	Digital Output	CMOS	Serial Data output for received data or read value of selected registers
SCLK	Digital Input with pull down	CMOS	Clock for serial data read and write

Note(s): SDO is set to tristate if CS is low. In this way more than one device can communicate on the same SDO bus.

SDI Command Structure. To program the SDI the CS signal has to go high. A SDI command is made up by a two bytes serial command and the data is sampled on the falling edge of SCLK. Figure 21 shows how the command looks like, from the MSB (B15) to LSB (B0). The command stream has to be sent to the SDI from the MSB (B15) to the LSB (B0).

Figure 21: SDI Command Structure

Мс	ode	Register address / Direct Command								Reg	ister I	Data		
B15	B14	B13	B12	B11	B10	B9	B8	Β7	B6	B5	B3	B2	B1	BO

The first two bits (B15 and B14) define the operating mode. There are three modes available (write, read, direct command) plus one spare (not used), as shown in Figure 22.

Figure 22: Bits B15, B14

B15	B14	Mode
0	0	WRITE
0	1	READ
1	0	NOT ALLOWED
1	1	DIRECT COMMAND

In case a write or read command happens the next 6 bits (B13 to B8) define the register address which has to be written respectively read, as shown in Figure 23.

B13	B12	B11	B10	B 9	B 8	Read/Write register
0	0	0	0	0	0	RO
0	0	0	0	0	1	R1
0	0	0	0	1	0	R2
0	0	0	0	1	1	R3
0	0	0	1	0	0	R4
0	0	0	1	0	1	R5
0	0	0	1	1	0	R6
0	0	0	1	1	1	R7
0	0	1	0	0	0	R8
0	0	1	0	0	1	R9
0	0	1	0	1	0	R10
0	0	1	0	1	1	R11
0	0	1	1	0	0	R12
0	0	1	1	0	1	R13

Figure 23: Bits B13-B8

The last 8 bits are the data that has to be written respectively read. A CS toggle high-low-high terminates the command mode.

If a direct command is sent (B15-B14=11) the bits from B13 to B8 defines the direct command while the last 8 bits are omitted. Figure 24 shows all possible direct commands:

Figure 24: List of Direct Commands

COMMAND_MODE	B13	B12	B11	B10	B9	B 8
clear_wake	0	0	0	0	0	0
reset_RSSI	0	0	0	0	0	1
trim_osc	0	0	0	0	1	0
clear_false	0	0	0	0	1	1
preset_default	0	0	0	1	0	0

All direct commands are explained below:

- **clear_wake:** Clears the wake state of the chip. In case the chip has woken up (WAKE pin is high) the chip is set back to listening mode.
- reset_RSSI: Resets the RSSI measurement.
- **trim_osc:** Starts the trimming procedure of the internal RC oscillator (see Figure 45).
- **clear_false:** Resets the false wake-up register (R13<7:0>=00).
- **preset_default:** Sets all register in the default mode, as shown in Figure 19.

Note(s): In order to get the AS3930 work properly after sending the preset_default direct command, it is mandatory to write R0<3>=0 and R0<2>=0.

Writing of Data to Addressable Registers (WRITE Mode).

The SDI is sampled at the falling edge of SCLK (as shown in the following diagrams).

A CS toggling high-low-high indicates the end of the WRITE command after register has been written. The following example shows a write command.

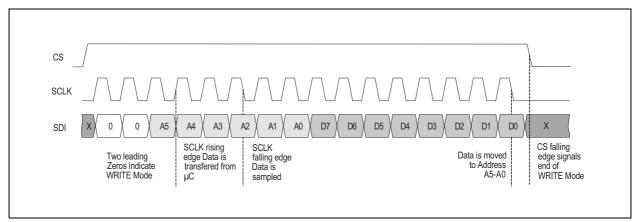
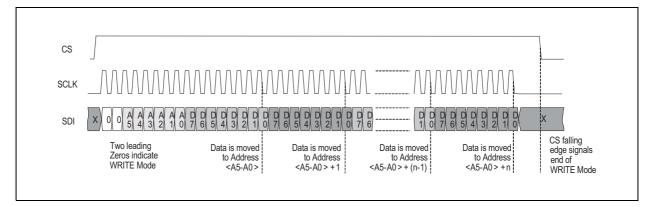



Figure 26:

Writing of Register Data with Auto-incrementing Address

Reading of Data from Addressable Registers (READ Mode).

Once the address has been sent through SDI, the data can be fed through the SDO pin out to the microcontroller.

A CS LOW toggling high-low-high has to be performed after finishing the read mode session, in order to indicate the end of the READ command and prepare the Interface to the next command control Byte.

To transfer bytes from consecutive addresses, SDI master has to keep the CS signal high and the SCLK clock has to be active as long as data need to be read.

Figure 27: Reading of Single Register Byte

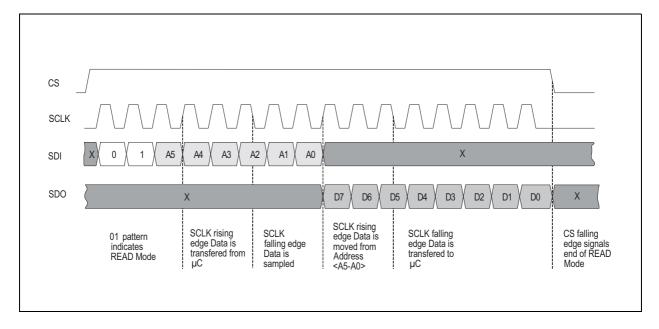
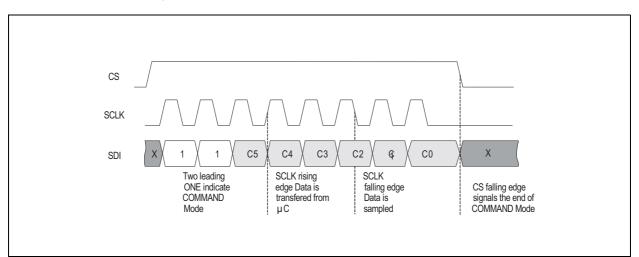
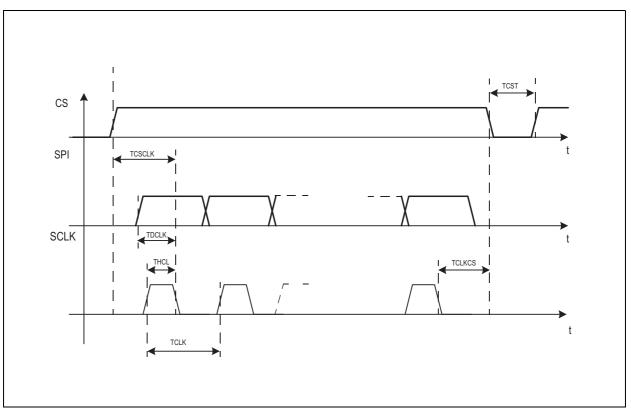



Figure 28: Send Direct COMMAND Byte



SDI Timing

Figure 29: SDI Timing Parameters

Symbol	Parameter	Min	Тур	Max	Units
TCSCLK	Time CS to Sampling Data	500			ns
TDCLK	Time Data to Sampling Data	300			ns
THCL	SCLK High Time	200			ns
TCLK	SCLK period	500			ns
TCLKCS	Time Sampling Data to CS down	500			ns
TCST	CS Toggling time	500			ns

Channel Amplifier and Frequency Detector

The channel amplifier consists of a variable gain amplifier (VGA), an automatic gain control, and a frequency detector. The latter detects the presence of a carrier. As soon as the carrier is detected the AGC is enabled, the gain of the VGA is reduced and set to the right value and the RSSI can be displayed.

Frequency Detector / AGC

The frequency detection uses the RTC as time base. In case the internal RC oscillator is used as RTC, it must be calibrated, but the calibration is guaranteed for a 32.768 kHz crystal oscillator only. The frequency detection criteria can be tighter or more relaxed according to the setup described in R2<1:0> (see Figure 31).

Figure 31:

Tolerance Settings for Wake-up

R2<1>	R2<0>	Tolerance
0	0	Relaxed
0	1	Tighter (Medium)
1	0	Stringent
1	1	Reserved

The AGC can operate in two modes:

- AGC down only (R1<5>=0)
- AGC up and down (R1<5>=1)

As soon as the AGC starts to operate, the gain in the VGA is set to maximum. If the AGC down only mode is selected, the AGC can only decrease the gain. Since the RSSI is directly derived from the VGA gain, the system holds the RSSI peak.

When the AGC up and down mode is selected, the RSSI can follow the input signal strength variation in both directions.

Regardless which AGC operation mode is used, the AGC needs maximum 35 carrier periods to settle.

The RSSI is stored in the register R10<4:0>.

Both AGC modes (only down or down and up) can also operate with time limitation. This option allows AGC operation only in time slot of 256μ s following the internal wake-up. Then the AGC (RSSI) is frozen till the wake-up or RSSI reset occurs.

The RSSI is reset either with the direct command 'clear_wakeup' or 'reset_RSSI'. The 'reset_RSSI' command resets only the AGC setting but does not terminate wake-up condition. This means that if the signal is still present the new AGC setting (RSSI) will appear not later than 300µs (35 LF carrier periods) after the command was received. The AGC setting is reset if for duration of 3 Manchester half symbols no carrier is detected. If the wake-up IRQ is cleared the chip will go back to listening mode.

In case the maximum amplification at the beginning is a drawback (e.g. in noisy environment) it is possible to set a smaller starting gain on the amplifier Figure 32. In this way it is possible to reduce the false frequency detection.

Figure 32: Bit Setting of Gain Reduction

R4<3>	R4<2>	R4<1>	R4<0>	Gain Reduction
0	0	0	0	No gain reduction
0	0	0	1	N.A
0	0	1	0 or 1	N.A
0	1	0	0 or 1	-4dB
0	1	1	0 or 1	-8dB
1	0	0	0 or 1	-12dB
1	0	1	0 or 1	-16dB
1	1	0	0 or 1	-20dB
1	1	1	0 or 1	-24dB

Antenna Damper

The antenna damper allows the chip to deal with higher field strength, it is enabled by register R1<4>. It consists of shunt resistors which degrade the quality factor of the resonator by reducing the signal at the input of the amplifier. In this way the resonator sees a smaller parallel resistance (in the band of interest) which degrades its quality factor in order to increase the linear range of the channel amplifier (the amplifier doesn't saturate in presence of bigger signals). Figure 33 shows the bit setup.

Figure 33: Antenna Damper Bit Setup

R4<5>	R4<4>	Shunt resistor (parallel to the resonator at 125 kHz)
0	0	1 kΩ
0	1	3 kΩ
1	0	9 kΩ
1	1	27 kΩ

Demodulator / Data Slicer

The performance of the demodulator can be optimized according to bit rate and preamble length as described in Figure 34 and Figure 35.

Figure 34:

Bit Setup for Envelop Detector for Different Symbol Rates

R3<2>	R3<1>	R3<0>	Symbol Rate [Manchester symbol/s]
0	0	0	4096
0	0	1	2184
0	1	0	1490
0	1	1	1130
1	0	0	910
1	0	1	762
1	1	0	655
1	1	1	512

If the bit rate gets higher, the time constant in the envelop detector must be set to a smaller value. This means that higher noise is injected because of the wider band. The next table is a rough indication of how the envelop detector looks like for different bit rates. By using proper data slicer settings it is possible to improve the noise immunity paying the penalty of a longer preamble. In fact if the data slicer has a bigger time constant it is possible to reject more noise, but every time a transmission occurs, the data slicer need time to settle. This settling time will influence the length of the preamble. Figure 35 gives a correlation between data slicer setup and minimum required preamble length.