

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

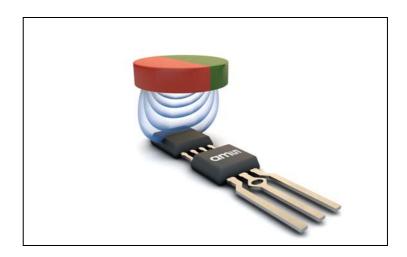
Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

AS5171

High-Resolution On-Axis Magnetic Angular Position Sensor

General Description


The AS5171 is a high-resolution angular position sensor for precise absolute angle measurement. The AS5171 is available with an analog output interface (AS5171A) or a digital output interface (AS5171B). The latter can be programmed as a PWM or a SENT-compliant output interface.

Based on a Hall sensor technology, this device measures the orthogonal component of the flux density (Bz) over a full-turn rotation and compensates for external stray magnetic fields with a robust architecture based on a 14-bit sensor array and analog front-end (AFE). A sub-range can be programmed to achieve the best resolution for the application. To measure the angle, only a simple two-pole magnet rotating over the center of the package is required. The magnet may be placed above or below the device. The absolute angle measurement provides an instant indication of the magnet's angular position. The AS5171 operates at a supply voltage of 5V, and the supply and output pins are protected against overvoltage up to +20V. In addition the supply pins are protected against reverse polarity up to -20V.

The AS5171A and AS5171B are available in a SIP package (System in Package). The package has integrated the AS5171 sensor die together with the decoupling capacitors necessary to pass system level ESD and EMC requirements. No additional components and PCB on the sensor side is needed. The product is defined as SEooC (Safety Element out of Context) according ISO26262.

Ordering Information and Content Guide appear at end of datasheet.

Figure 1:
Typical Arrangement of AS5171 and a Magnet

Key Benefits and Features

The benefits and features of this device are listed below:

Figure 2: Added Value of Using AS5171

Benefits	Features
Resolve small angular excursion with high accuracy	12-bit resolution @90° minimum arc
Accurate angle measurement	Low output noise, low inherent INL
Higher durability and lower system costs (no shield needed)	Magnetic stray field immunity
Enabler for safety critical applications	Functional safety, diagnostics, dual redundant chip version
Suitable for automotive applications	AEC-Q100 Grade 0 qualified
SIP Package (sensor + decoupling capacitors for ESD/EMC)	System cost reduction – no PCB and additional components are needed

Applications

The AS5171 is ideal for automotive applications like:

- Brake and Gas Pedals
- Throttle Valve and Tumble Flaps
- Steering Angle Sensors
- Chassis Ride
- EGR
- Fuel-Level Measurement Systems
- 2/4WD Switch
- Contactless Potentiometers

Page 2ams DatasheetDocument Feedback[v1-06] 2017-Oct-13

Block Diagram

The functional blocks of the AS5171A and AS5171B are shown below:

Figure 3: Functional Blocks of the AS5171A

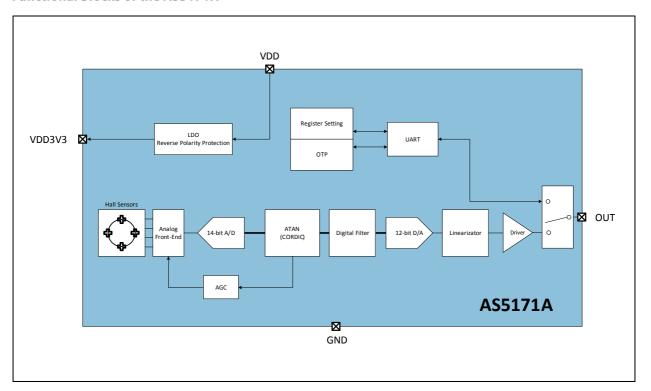
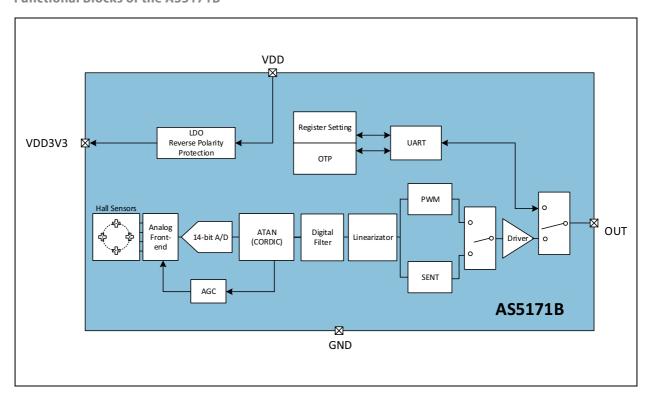



Figure 4: Functional Blocks of the AS5171B

ams Datasheet Page 3
[v1-06] 2017-Oct-13
Document Feedback

Pin Assignments

Figure 5: AS5171A/B Pin Assignment (Top View, SIP)

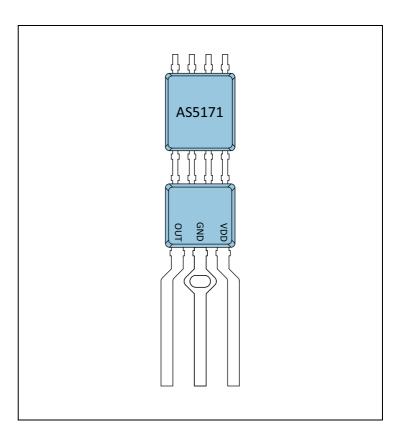


Figure 6: AS5171A/B Pin Description

Pin#	Pin Name	Pin Type	Description	Comments
SIP				
1	VDD	Supply	Positive supply	5V supply – 100nF capacitor in SIP Body
-	TP1	n.a.	Test pin	
-	TP2	n.a.	Test pin	
-	TP3	n.a.	Test pin	
3	OUT	Analog output (AS5171A) Digital output (AS5171B)	Output interface	4.7nF capacitor in SIP Body
-	TP4	n.a.	Test pin	
-	VDD3V3	Supply		3.3V on-chip low-dropout (LDO) output. 100nF capacitor in SIP Body
2	GND	Supply	Ground	Connected to ground

Page 4ams DatasheetDocument Feedback[v1-06] 2017-Oct-13

Absolute Maximum Ratings

Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated under Operating Conditions is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Figure 7:
Absolute Maximum Ratings

Symbol	Parameter	Min	Max	Units	Comments
- Cymbol				Office	Comments
	Electri	cal Param	eters		
VDD	DC Supply Voltage at VDD pin	-20 20 V No		Not operational	
VOUT	External DC voltage at OUT pin	-0.3	20	V	Permanent
VDIFF	DC voltage difference between VDD and OUT	-20	20	V	
VREGOUT	DC voltage at the VDD3V3 pin	-0.3	5.0	V	
I _{SCR}	Input Current (latch-up immunity)	-100	100	mA	AEC-Q100-004
	Continuous Power	Dissipati	on (T _{AMB} =	70°C)	
P _T	Continuous power dissipation		66	mW	Calculated with IDDmax=12mA; VDD=5.5V
	Electro	static Disc	harge		
ESD _{HBM} on Chip level	Electrostatic discharge HBM	<u> </u>	-2	kV	AEC-Q100-002
ESD _{HBM} system	Electrostatic discharge HBM on VDD, Out and GND (outer connects)	<u> </u>	-4	kV	AEC-Q100-002
	Temperature Rang	es and Sto	orage Cond	litions	
T _{AMB}	Operating temperature range	-40	150	°C	Ambient temperature
TaProg	Programming temperature	5 45		°C	Programming@ Room temperature (25°C ± 20°C)
T _{STRG}	Storage temperature range	-55	150	°C	

ams Datasheet Page 5
[v1-06] 2017-Oct-13
Document Feedback

Symbol	Parameter	Min	Max	Units	Comments
T _{BODY}	Package body temperature		260	°C	The reflow peak soldering temperature (body temperature) is specified according to IPC/JEDEC J-STD-020 "Moisture/Reflow Sensitivity Classification for Non-hermetic Solid State Surface Mount Devices." The lead finish for Pb-free leaded packages is "Matte Tin" (100% Sn)
RH _{NC}	Relative humidity non-condensing	5	85	%	
MSL	Moisture sensitivity level		3		Represents a maximum floor life time of 168 hours

System Electrical and Timing Characteristics

All in this datasheet defined tolerances for external components need to be assured over the whole operation conditions range and also over lifetime.

Overall condition: T_{AMB} = -40°C to 150°C, VDD=4.5V to 5.5V; Components spec; unless otherwise noted

Figure 8: Operating Conditions

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
VDD	Positive supply voltage		4.5	5.0	5.5	V
VREG	Regulated voltage	VDD3V3 should not be loaded by any external DC current	3.3	3.45	3.6	V
IDD_A	Supply current AS5171A	AGC=255 (no magnet placed); no output load; no short circiut	4		12	mA
IDD_B	Supply current AS5171B	AGC=255 (no magnet placed); no output load; no short circiut	4		10	mA
ISTART	Supply current at start-up	VREG = 2.25V	2.5	5	10	mA
TSUP	Start-up time	Functional mode			10	ms

 T_{AMB} = -40°C to 150°C, VDD = 4.5 – 5.5V (5Voperation), Magnetic Characterization; unless otherwise noted

Page 6ams DatasheetDocument Feedback[v1-06] 2017-Oct-13

Figure 9: Electrical System Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
CRES	Core resolution				14	bit
ARES	Analog resolution (AS5171A)	Range > 90°			12	bit
DRES	Digital resolution (AS5171B)				12	bit
INLopt	Integral non-linearity (optimum)	Best aligned reference magnet ⁽¹⁾ at 25°C over full turn 360°	-0.5		0.5	deg
INLtemp	Integral non-linearity (optimum)	Best aligned reference magnet ⁽¹⁾ over temperature -40°C to 150°C over full turn 360°	-0.9		0.9	deg
INL	Integral non-linearity	Best aligned reference magnet ⁽¹⁾ over temperature -40°C to 150°C over full turn 360° and displacement	-1.4		1.4	deg
ON	Output noise peak to peak	Static conditions - filter on			1	LSB
ST	Sampling time			125		μs

Note(s):

1. Reference magnet: NdFeB, 6 mm diameter, 2.5 mm thickness

Figure 10:
Power Management – Supply Monitor - Timing

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
VDDUVTH	VDD undervoltage upper threshold		3.5	4.0	4.5	V
VDDUVTL	VDD undervoltage lower threshold		3.0	3.5	4.0	V
VDDUH	VDD undervoltage hysteresis		300	500	900	mV
UVDT	VDD undervoltage detection time	Time devices detects undervoltage VDD< VDDUVTH	10	50	250	μs
UVRT	Undervoltage recovery time	Time device return into normal mode from failure band VDD > VDDUVTH	10	50	250	μs
VDDOVTH	VDD overvoltage upper threshold		6.0	6.5	7.0	V

ams Datasheet Page 7
[v1-06] 2017-Oct-13
Document Feedback

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
VDDOVTL	VDD overvoltage lower threshold		5.5	6.0	6.5	V
VDDOH	VDD overvoltage hysteresis		300	500	900	V
OVDT	VDD overvoltage detection time	Time devices detects overvoltage VDD> VDDOVTL	500	1000	2000	μs
OVRT	VDD overvoltage recovery time	Time device return into normal mode from failure band VDD < VDDOVTL	500	1000	2000	μs
TDETWD	WatchDog error detection time	Time device detects oscillator failure till output is in failure band			12	ms

 $T_{AMB} = -40 ^{\circ} C$ to 150 $^{\circ} C$, VDD = 4.5V to 5.5V, unless otherwise noted.

Two-pole cylindrical diametrically magnetized source:

Figure 11: Magnetic Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Bz	Orthogonal magnetic field strength	Required orthogonal component of the magnetic field strength measured at the package surface along a circle of 1.25 mm MFER = 0	30		70	mT
BzE	Orthogonal magnetic field strength – extended mode	Required orthogonal component of the magnetic field strength measured at the package surface along a circle of 1.25mm MFER = 1	10		90	mT
Disp ⁽¹⁾	Displacement radius	Offset between defined device center and magnet axis. Dependent on the selected magnet.		0.5		mm

Note(s):

1. Reference magnet: NdFeB, 6 mm diameter, 2.5 mm thickness

Page 8ams DatasheetDocument Feedback[v1-06] 2017-Oct-13

Figure 12: Electrical and Timing Characteristics Analog Output (AS5171A)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
INLOS	INL output stage		-6		+6	LSB
DNLOS	DNL output stage		-5		+5	LSB
RERR ⁽¹⁾	Ratiometricity error	Between 4% and 96% of VDD	-0.5%		0.5%	VDD
BVPU	Output voltage broken VDD with pull-up resistor	Pull-up resistor must be in the specified range (see Figure 38)	96		100	%VDD
BGPD	Output voltage broken ground with pull-down resistor	Pull-down resistor must be in the specified range (see Figure 38)	0		4	%VDD
OSSCG	Output short-circuit current GND	OUT = GND	-20	-10	-5	mA
OSSCV	Output short-circuit current VDD	OUT = VDD	5	10	20	mA
OSSDT	Output short-circuit detection time	OUT = GND or OUT = VDD	20	200	600	μs
OSSRT	Output short-circuit recovery time		2	5	20	ms
OLCH	Output level clamping high	Output current at OUT pin -3 mA	96			%VDD
OLCL	Output level clamping low	Output current at OUT pin 3 mA			4	%VDD
OSPSR	Output stage positive step response (driver only)	From 0 to 90%VDD, measured at OUT pin, with RPUOUT = 4.7kΩ, CLOAD = 1nF, VDD = 5V			250	μs
OSNSR	Output stage negative step response (driver only)	From VDD to 10%VDD, measured at OUT pin, with RPUOUT = $4.7k\Omega$, CLOAD = $1nF$, VDD = $5V$			250	μs
OSTD	Output stage temperature drift	of value at mid code, info parameter not tested in production	-0.2		0.2	%

Note(s):

- For each code the ratiometricity error is defined as follows: VOUTRATE=((VOUTact - (VOUTtyp*(VDDact/ VDDtyp)))/VDDtyp)*100 Where:
 - VOUTact is the actual output voltage
 - VOUTtyp is the typical output voltage
 - VDDact is the actual supply voltage
 - VDDtyp is the typical supply voltage

ams Datasheet Page 9
[v1-06] 2017-Oct-13 Document Feedback

Figure 13: Electrical and Timing Characteristics PWM Output (AS5171B)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
PWMSSOCG	Short-circuit output current	OUT = GND	-20	-10	-5	mA
PWMSSOCV	Short-circuit output current	OUT = VDD	5	10	20	mA
PWMSSDT	PWM short-circuit detection time	OUT = GND or OUT = VDD			5	% PWM clock cycle
PWMSSRT	PWM short circuit recovery time			6		% PWM clock cycle
ВКРWMVOH	PWM output voltage high in broken condition	Broken VDD or broken GND, OUT = high, PWMVOH=VDD-VOUT RPU = $10k\Omega$ or RPD = $10k\Omega$	0		0.4	V
BKPWMVOL	PWM output voltage low in broken condition	Broken VDD or broken GND, OUT = low, RPU = $10k\Omega$ or RPD = $10k\Omega$	0		0.4	V
PWMF7	PWM frequency	PWMFR = 111	112.5	125	137.5	Hz
PWMF6	PWM frequency	PWMFR = 110	180	200	220	Hz
PWMF5	PWM frequency	PWMFR = 101	225	250	275	Hz
PWMF4	PWM frequency	PWMFR = 100	360	400	440	Hz
PWMF3	PWM frequency	PWMFR = 011	450	500	550	Hz
PWMF2	PWM frequency	PWMFR = 010	720	800	880	Hz
PWMF1	PWM frequency	PWMFR = 001	900	1000	1100	Hz
PWMF0	PWM frequency	PWMFR = 000	1800	2000	2200	Hz
PWMVOH	PWM output voltage level high	IOUT = 5 mA, PWMVOH = VDD - VOUT	0		0.4	V
PWMVOL	PWM output voltage level high	IOUT = 5 mA	0		0.4	V
PWMSRF	PMM slew rate fast	Between 25% and 75% of VDD, RPUOUT = $4.7k\Omega$, CLOUT1 = $4.7nF$, PWMSR = 0	1	2	4	V/µs

Page 10ams DatasheetDocument Feedback[v1-06] 2017-Oct-13

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
PWMSRS	PMM slew rate slow	Between 25% and 75% of VDD, RPUOUT = $4.7k\Omega$, CLOUT1 = $4.7nF$, PWMSR = 1	0.5	1	2	V/µs

Figure 14: Electrical and Timing Characteristics SENT Output (AS5171B)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
SENTSSOC	SENT short-circuit output	OUT = 20V	10	20	40	mA
SLIVISSOC	current	OUT = 0V	-40	-20	-10	mA
BKSENTVOH	SENT output voltage in broken condition	Broken VDD or broken GND, RPU = 50kΩ, SENT constantly high	0		1.2	٧
SENTVOH	SENT output voltage high		4.1			V
SENTVOL	SENT output voltage low				0.5	V
SENTFT	SENT fall time				6.5	μs
SENTRT	SENT rise time				18	μs

Figure 15: Electrical and Timing Characteristics UART Interface

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
UARTVIH	UART high level input voltage		70			%VDD
UARTVIL	UART low level input voltage				30	%VDD
UARTVOH	UART high level output voltage		VDD-0.5			V
UARTVOL	UART low level output voltage				0.5	V
UARTBRLIM ⁽¹⁾	UART baud rate		2400		9600	Baud

Note(s):

1. Typ. error 1%. Indirect tested.

ams Datasheet Page 11
[v1-06] 2017-Oct-13
Document Feedback

Detailed Description

The AS5171 is a Hall-based rotary magnetic position sensor using a CMOS technology. The lateral Hall sensor array converts the magnetic field component perpendicular to the surface of the chip into a voltage.

The signals coming from the Hall sensors are first amplified and filtered before being converted by the analog-to-digital converter (ADC). The output of the ADC is processed by the CORDIC block (Coordinate-Rotation Digital Computer) to compute the angule and magnitude of the magnetic field vector. The sensor and analog front-end (AFE) section works in a closed loop alongside an AGC to compensate for temperature and magnetic field variations. The calculated magnetic field strength (MAG), the automatic gain control (AGC) and the angle can be read through the output pin (OUT) in UART mode.

The magnetic field coordinates provided by the CORDIC block are fed to a digital filter which reduces noise. A linearization block generates the transfer function, including linearization. The AS5171 is available with two different output interfaces: analog ratiometric (AS5171A) or digital PWM or SENT (AS5171B).

The output of the AS5171 can be programmed to define a starting position (zero angle) and a stop position (maximum angle). An embedded linearization algorithm allows reducing the system INL error due, for example, to mechanical misalignment, magnet imperfections, etc.

The AS5171 can be programmed through the OUTpin with a UART interface which allows writing an on-chip non-volatile memory (OTP) where the specific settings are stored. The AS5171 can be programmed by the **ams** programming tool, both at the component and board level.

Page 12

Document Feedback

[v1-06] 2017-Oct-13

Register Description

The register description for AS5171A/B are explained below:

- Descriptions and Settings with Analog are supported by AS5171A
- Descriptions and Settings with PWM are supported by AS5171B

Figure 16: Non-Volatile Memory Register Description

Address	Bit Position	Field	Description
0x0A	7:0	CUSTID0	Customer ID byte 0
0x0B	7:0	CUSTID1	Customer ID byte 1
0x0C	7:0	CUSTID2	Customer ID byte 2
0x0D	7:0	CUSTID3	Customer ID byte 3
	0	PWMINV	PWM inverted
	1	PWMSR	PWM slew rate (0 = PWM slew rate fast PWMSRF, 1 = PWM slew rate slow PWMSRS)
0x0E	3:2	DIGOS	Digital output stage (00 = PWM push-pull 01 = PWM pull-down 10 = PWM pull-up 11= SENT) It applies to the AS5171B only
	6:4	RBKDEB	Analog read-back debouncing
	7	n.a.	Not used
	0	FBS	Failure band selection (0 = lower failure band, 1 = upper failure band)
0x0F	2:1	HYST	Hysteresis across the brake point
	4:3	QUAD	Quadrant selection
	7:5	PWMFR	PWM frequency selection
	1:0	PWMRTH	PWM rising threshold TBD
0x10	3:2	PWMFTH	PWM falling threshold TBD
	7:4	SENTMID	SENT Message ID
	4:0	SENTTK	SENT tick
	5	SENTESM	Enable SENT serial message
0x11	6	SENTPP	SENT pause pulse enable (1 = enable, 0 = disable)
	7	SENTRC	SENT rolling counter enable (1 = enable, 0 = disable)

ams DatasheetPage 13[v1-06] 2017-Oct-13Document Feedback

Address	Bit Position	Field	Description	
0x12	3:0	n.a	No use. Default 0	
OXIZ	6:4	n.a	No use. Default 0	
0x13	3:0	n.a	No use. Default 0	
0.13	6:4	n.a	No use. Default 0	
0x14	7:0	CLMPH	Clamping level high	
0x15	3:0	CLMPH	Reg 0x14[0] =LSB Reg 0x15[3]=MSN	
	7:4	CLMPL	Clamping level low Reg 0x15[4] =LSB	
0x16	7:0	CLIVIFE	Reg 0x16[7]=MSN	
0x17	7:0		Post processing offset	
0x18	7:0	PPOFFSET	Reg 0x17[0] =LSB Reg 0x19[3]=MSB	
0x19	3:0		neg 0x19[3]-W3b	
0,19	7:4		Post processing gain	
0x1A	7:0	PPGAIN	Reg 0x19[4] =LSB	
0x1B	4:0		Reg 0x1B[3]=MSB	
OXID	7:5		Break point	
0x1C	7:0	ВР	Reg 0x1B[5] =LSB Reg 0x1D[2]=MSB	
	2:0		neg 0x1D[2]=NISB	
	3	MFER	Magnetic field extended range $(1 = Bz, 0 = BzE)$	
0x1D	4	AER	Angle extended range (set to 1 if the maximum angle excursion is smaller than 22 degree)	
	6:5	FILTER	Post processing filter	
	7	CUSLOCK	Customer settings lock	
0x1E	7:0	SIGN	Signature	

Page 14ams DatasheetDocument Feedback[v1-06] 2017-Oct-13

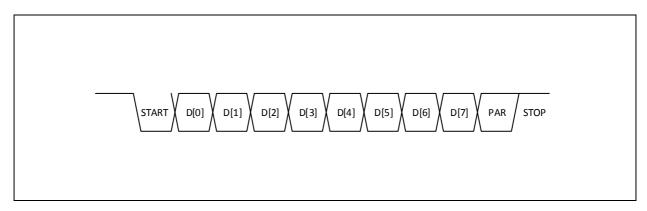
Figure 17: Volatile Memory Register Description

Address	Bit Position	Field	R/W	Description
0x22	7:0	DAC12IN	R/W	Input word of the 12-bit output DAC
	3:0	DACIZIN	R/W	(Reg0x23[3] = MSB, Reg0x22[0] = LSB)
	4	DAC12INSEL	R/W	DAC 12 input buffer selection
0x23	5	DSPRN	R/W	Digital signal processing reset
	6	GLOAD	R/W	Enable of gload
	7	-	-	Not used
0x32	7:0	ANGLECORDIC	R	Angle of the CORDIC output block.
0x33	5:0	ANGLLCONDIC	"	(Reg0x33[5] = MSB, Reg0x32[0] = LSB)
0,33	7:6	-	-	Not used
0x34	7:0	MAG	R	CORDIC magnitude
0x35	7:0	AGC	R	AGC value
0x36	7:0	ANGLEFILTER	R	Angle of the digital filter output block
0x37	3:0	ANGLLIILILN	n	(Reg0x37[3] = MSB, Reg0x36[0] = LSB)
0x37	7:4	-	-	Not used

Figure 18: Special Functions

Address	Bit Position	Field	Description			
0x60	7:0	P2F	Pass-to-Function, see UART			
0x61	7:0	F Z I	Tass to Function, see OAM			
0x62	7:0	BURNOTP	Permanently burn OTP, see UART			
0x63	7:0	BORNOTI	Termanently built on, see oath			

ams Datasheet Page 15
[v1-06] 2017-Oct-13
Document Feedback



UART Interface

The AS5171 is equipped with a UART interface, which allows reading and writing the registers as well as permanently programming the non-volatile memory (OTP). By default (factory setting, customer_ lock = 0) the AS5171 is in the so-called *Communication Mode* and the UART is connected at the output pin (OUT). In this mode, the device is in open-drain mode and therefore a pull-up resistor has to be connected on the output.

The UART interface allows reading and writing two consecutive addresses. The standard UART sequence consists of four frames. Each frame begins with a start bit (START), which is followed by 8 data bits (D[0:7]), one parity bit (PAR), and a stop bit (STOP), as shown in Figure 19.

Figure 19: UART Frame

The PAR bit is even parity calculated over the data bits (D[0:7]). Each frame is transferred from LSB to MSB.

The four frames are shown in Figure 20.

Figure 20: UART Frame Sequence

Frame Number	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
1				0x5	5			
2	R/W	R/W ADDRESS						
3				DATA	A 1			
4				DATA	\ 2			

The first frame is the synchronization frame and consists of D[0:7] = 0x55 followed by the parity bit (PAR=0) and the stop bit. This frame synchronizes the baud rate between the AS5171 and the host microcontroller.

Page 16

Document Feedback

[v1-06] 2017-Oct-13

The second frame contains the read/write command (D[7] = 0 Write, D[7] = 1 Read) and the address of the register (D[6:0] = ADDRESS).

The content of the third and fourth frames (DATA1 and DATA2) will be written to or read from the location specified by ADDRESS and ADDRESS+1, respectively.

Figure 21 and Figure 22 show examples of read and write.

Figure 21: Example of Write (Reg[0x22] = 0x18, Reg[0x23] = 0xA2)

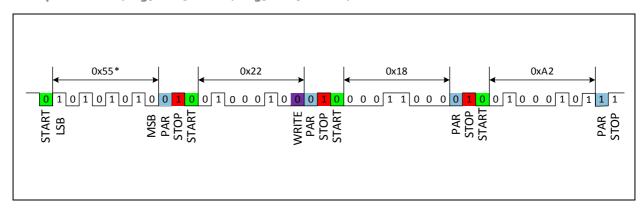
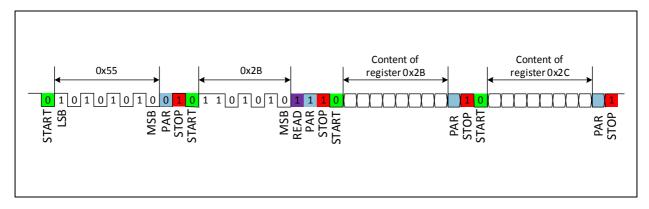



Figure 22: Example of Read (Reg[0x2B], Reg[0x2C])

Exiting Communication Mode

Communication mode is exited and operational mode is entered with a Pass-to-function (P2F) command, by writing to the virtual registers 0x60 and 0x61:

P2F: write(0x60) = 0x70, write(0x61) = 0x51

No more commands can be sent after sending this command, because the device is permanently placed in operational mode.

Programming OTP Registers

The BURNOTP command writes the OTP registers with their programmed values. The command is issued by writing to virtual registers 0x62 and 0x63:

BURNOTP: write(0x62) = 0x70, write(0x63) = 0x51.

ams Datasheet Page 17
[v1-06] 2017-Oct-13 Document Feedback

Customer ID

A specific identifier chosen by the user can be stored in the non-volatile memory. This identifier consists of 4 bytes and can be stored in the locations CUSTID0, CUSTID1, CUSTID2, and CUSTID3.

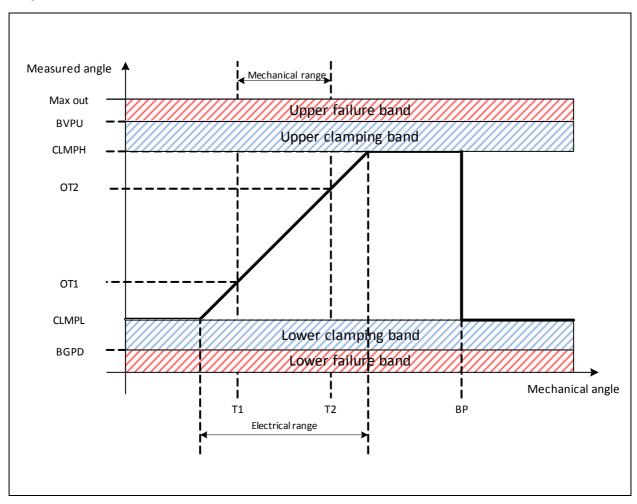
Output Linear Transfer Function

A linear transfer function controls the state of the output in response to the absolute orientation of the external magnet. The parameters which control this function are shown in Figure 23.

To calculate this settings into the corresponding sensor settings, **ams** provides a programming tool, specific DLL or the complete source code. For more information, please contact **ams**.

Figure 23: Transfer Function Control Parameters

Symbol	Parameter	Resolution [bit]
T1	Mechanical angle starting point	14
T2	Mechanical angle stop point	14
OT1	Output at the starting point (T1)	12
OT2	Output at the stop point (T2)	12
CLMPL	Clamping level low	12
CLMPH	Clamping level high	12
ВР	Breakpoint	14


As shown in the Figure 24, the parameters T1, T2, OT1, and OT2 define the input-to-output linear transfer function. The dedicated programmer for the AS5171 uses the parameters from Figure 23 to generate the corresponding settings CLMPL, CLMPH, PPOFFSET, PPGAIN and BP (see Figure 24).

The clamping level parameters CLMPL and CLMPH define the absolute minimum and maximum level of the output. Both clamping levels can be set with the 12 LSBs out of the 12-bit output resolution. CLMPL and CLMPH must always be set outside of the lower and upper diagnostic failure band defined by the output broken wire voltage (see Figure 24: BGPD and BVPU).

Page 18
Document Feedback
[v1-06] 2017-Oct-13

Figure 24: Output Transfer Function

The breakpoint BP sets the discontinuity point where the output jumps from one clamping level to the other. It is strongly recommended to set the breakpoint at the maximum distance from the start and stop position (T1 and T2). To handle the case of a full turn, a hysteresis function across the breakpoint can be used to avoid sudden jumps between the lower and upper clamping level.

Figure 25: Hysteresis Setting

HYST	Hysteresis LSBs
00	0
01	56
10	91
11	137


The hysteresis LSB is based on the core resolution (14-bit).

ams Datasheet Page 19
[v1-06] 2017-Oct-13 Document Feedback

The AS5171 features a programmable digital filter. As shown in Figure 26 in a static condition (no change of the input), the static error band is ± 0.5 LSB (at 12-bit resolution). Whenever an input step occurs, the output (measured angle) follows the input (mechanical angle) entering a certain error band within the step response time. From the time when the output is within the static error band the output takes 1000 ms to settle to the static error band achieving again ± 0.5 LSB output noise. The filter is not usable in 360° range, if the Hysteresis setting is on.

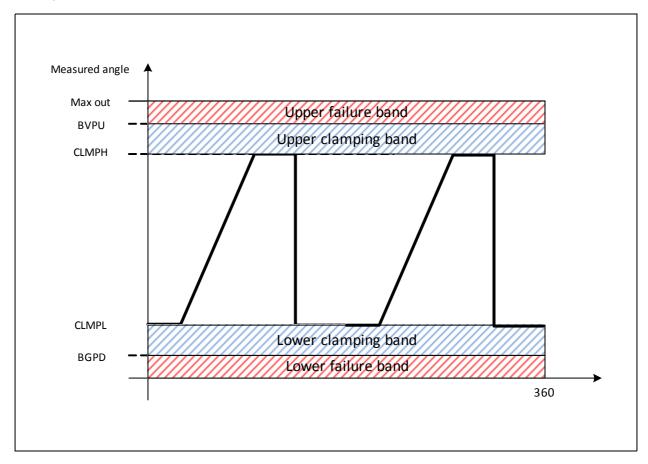
Figure 26: Step Response

It is possible to optimize the step response time versus the dynamic error band with the FILTER setting.

Figure 27: FILTER Setting

FILTER	Dynamic Error Band [LSB]	Step Response Time [μs]
00	Filter off	Not applicable
01	23	5 CORDIC cycles

Page 20
Document Feedback
[v1-06] 2017-Oct-13


Multiple Quadrants

The multiple quadrants option allows repeating the same output control parameters up to 4 times over the full turn rotation as shown in the Figure 29, Figure 30, and Figure 31. The QUAD parameter sets the number of quadrants, as shown in the Figure 28.

Figure 28: Number of Quadrants

QUADEN	Number of Quadrants
00	Single
01	Double
10	Triple
11	Quadruple

Figure 29: Dual Quadrant Mode

ams Datasheet Page 21
[v1-06] 2017-Oct-13
Document Feedback

Figure 30: **Triple Quadrant Mode**

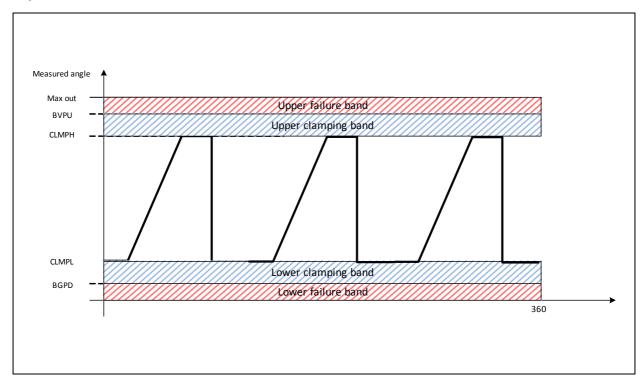
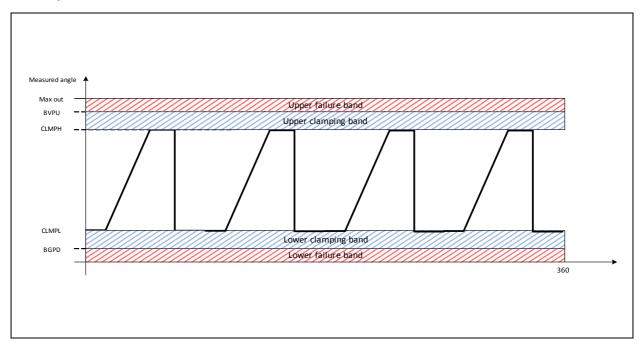



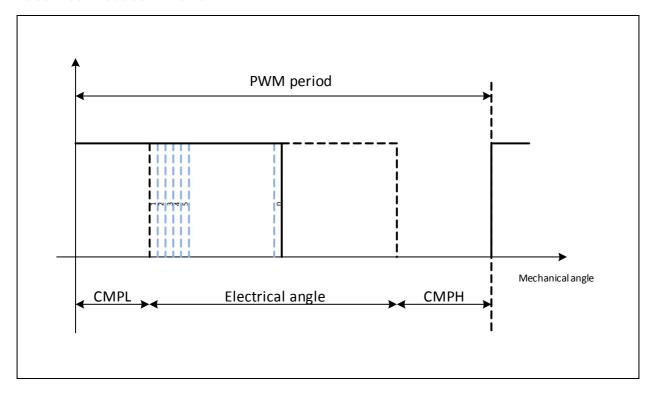
Figure 31: **Quadruple Quadrant Mode**

Page 22 ams Datasheet [v1-06] 2017-Oct-13

Extended Magnetic Input Range

The magnetic input field range can be boosted with the MFER bit. The extended magnetic field allows increasing the maximum air gap between the AS5171 and the magnet.

Analog Output (AS5171A)


The AS5171A provides a linear analog ratiometric output signal. The output buffer features a push-pull analog output stage which can be loaded with a pull-down or a pull-up resistor. The output voltage represents the angular orientation of the magnet above the AS5171A on a linear absolute scale and is ratiometric to VDD.

PWM Output (AS5171B)

The AS5171B has a PWM output. With the DIGOS setting, the PWM output stage can be programmed as a push-pull, pull-down, or pull-up driver. The duty-cycle of each pulse is proportional to the absolute angular position of the external magnet.

The PWM signal consists of a frame of 4096 clock periods as shown in Figure 32. The PWM frame begins with a certain number of clocks high, defined by the CLMPL, which is followed by the electrical angle information. The frame ends with a certain number of clock pulses low, as defined by the CLMPH. It is possible to invert the frame using the PWMINV setting.

Figure 32:
Pulse Width Modulation Frame

The PWMFR setting sets the duration of the PWM frequency. The PWMSR setting chooses between fast and slow steps.

ams Datasheet Page 23
[v1-06] 2017-Oct-13
Document Feedback

SENT Output

The AS5171B provides a SENT-compatible output (Single Edge Nibble Transmission) interface which is compliant with the SAE-J2716 standard (Jan-2010) and features the Single Secure Sensor and the Single Sensor protocol (refer to SENT_J2716_ Standard - Appendix A.3 and A.4). SENT is a single-wire interface based on a unidirectional communication scheme from the sensor (transmitter) to the engine control unit (receiver). The sensor constantly transmits data to the receiver.

The SENT interface can be enabled on the AS5171B with the DIGOS setting.

The SENT frame consists of 8 nibbles in which each nibble is made up by 4 bits. The duration of the nibbles is variable and depends on its content and tick frequency. With the AS5171B, the tick frequency is selected by the SENTTK setting, as shown in the below figure.

Figure 33: SENT Tick Period

SENTTK	SENT Tick Period (μs)
00000	3
00001	4
00010	4.5
00011	5
00100	5.5
00101	5.75
00110	6.5
00111	6.75
01000	7.5
01001	8
01010	8.5
01011	9
01100	9.5
01101	10
01110	10.25
01111	10.5
10000	10.75
10001	11

Page 24

Document Feedback [v1-06] 2017-Oct-13

SENTTK	SENT Tick Period (μs)
10010	11.25
10011	11.5
10100	11.75
10101	12
10110	12.25
10111	12.5
11000	2.25
11001	2.5
11010	2.75
11011	3
11100	3.25
11101	3.5
11110	3.5
11111	3.5

The nibble protocol consists of:

- 5 clock ticks low
- 7 clock ticks + n clock ticks high

Where n is the decimal representation of the 4 bit data. If the nibble data is zero (data = 0x00, n = 0) the nibble duration is 12 ticks, while if the nibble data is 15 (data = 0xFF, n = 15) its duration is 27 ticks.

ams DatasheetPage 25[v1-06] 2017-Oct-13Document Feedback