

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

FEATURES

Fast access time : 55nsLow power consumption:

Operating current : 45/30mA (TYP.) Standby current : $10\mu A$ (TYP.) LL-version $4\mu A$ (TYP.) SL-version

■ Single 2.7V ~ 3.6V power supply

■ All inputs and outputs TTL compatible

Fully static operation

■ Tri-state output

■ Data byte control : LB# (DQ0 ~ DQ7)

UB# (DQ8 ~ DQ15)

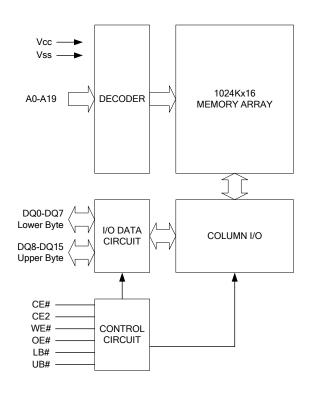
■ Data retention voltage : 1.2V (MIN.)

Green package available

■ Package: 48-pin 12mm x 20mm TSOP-I

GENERAL DESCRIPTION

The AS6C1616 is a 16,777,216-bit low power CMOS static random access memory organized as 1,048,576 words by 16 bits. It is fabricated using very high performance, high reliability CMOS technology. Its standby current is stable within the range of operating temperature.


The AS6C1616 is well designed for low power application, and particularly well suited for battery back-up nonvolatile memory application.

The AS6C1616 operates from a single power supply of $2.7V \sim 3.6V$ and all inputs and outputs are fully TTL compatible

PRODUCT FAMILY

Product	Operating	Vcc Range	Speed	Power Dissipation			
Family	Temperature	vcc range	Speed	Standby(IsB1,TYP.)	Operating(Icc,TYP.)		
AS6C1616(I)	-40 ~ 85℃	2.7 ~ 3.6V	55ns	10μA (LL)/4μA(SL)	45/30mA		

FUNCTIONAL BLOCK DIAGRAM

PIN DESCRIPTION

SYMBOL	DESCRIPTION
A0 - A19	Address Inputs
DQ0 – DQ15	Data Inputs/Outputs
CE#, CE2	Chip Enable Input
WE#	Write Enable Input
OE#	Output Enable Input
LB#	Lower Byte Control
UB#	Upper Byte Control
Vcc	Power Supply
Vss	Ground

PIN CONFIGURATION

A15	48
-----	----

TSOP-I

ABSOLUTE MAXIMUN RATINGS*

PARAMETER	SYMBOL	RATING	UNIT
Voltage on Vcc relative to Vss	V _{T1}	-0.5 to 4.6	V
Voltage on any other pin relative to Vss	V _{T2}	-0.5 to Vcc+0.5	V
Operating Temperature	TA	-40 to 85(I grade)	$^{\circ}$
Storage Temperature	Тѕтс	-65 to 150	$^{\circ}$
Power Dissipation	PD	1	W
DC Output Current	Іоит	50	mA

^{*}Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to the absolute maximum rating conditions for extended period may affect device reliability.

TRUTH TABLE

MODE	CE#	CE2	OE#	WE#	LB# UB#		I/O OPERATION		SUPPLY CURRENT
022	02//	022	02"	***		02"	DQ0-DQ7	DQ8-DQ15	OOT I ET OOTHILEITT
	Н	Х	X	Χ	Χ	Х	High – Z	High – Z	
Standby	Х	L	Х	X	Χ	Х	High – Z	High – Z	ISB,ISB1
	Х	Χ	Х	Х	Н	Н	High – Z	High – Z	
Output Disable	L	Н	Н	Н	L	Х	High – Z	High – Z	lcc,lcc1
Output Disable	L	Н	Н	Н	Χ	L	High – Z	High – Z	100,1001
	L	Н	L	Н	L	Н	D_OUT	High – Z	
Read	L	Н	L	Н	Н	L	High – Z	D_OUT	lcc,lcc1
	L	Н	L	Н	L	L	D_OUT	D _{OUT}	
Write	L	Н	Х	L	L	Н	D _{IN}	High – Z	
	L	Н	Х	L	Н	L	High – Z	D_IN	lcc,lcc1
	L	Н	Х	L	L	L	D_IN	D_IN	

Note: $H = V_{IH}$, $L = V_{IL}$, X = Don't care.

DC ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	TEST CONDITION	ON		MIN.	TYP. ^{^4}	MAX.	UNIT
Supply Voltage	Vcc				2.7	3.0	3.6	V
Input High Voltage	V _{IH} *1				2.2	-	Vcc+0.3	V
Input Low Voltage	V _{IL} *2				- 0.2		0.6	V
Input Leakage Current	ILI	$V_{CC} \ge V_{IN} \ge V_{SS}$			- 1	-	1	μΑ
Output Leakage Current	ILO	$V_{CC} \ge V_{OUT} \ge V_{SS},$ Output Disabled	*		- 1	-	1	μΑ
Output High Voltage	Vон	lон = -1mA			2.2	2.7	-	V
Output Low Voltage	Vol	I _{OL} = 2mA			-	-	0.4	V
Average Operating	Icc	Cycle time = Min. CE# = V _{IL} and CE2 = I _{I/O} = 0mA Other pins at V _{IL} or V _I		- 55	-	45	60	mA
Power supply Current	lcc ₁	Cycle time = $1\mu s$ CE# $\leq 0.2V$ and CE2 $\geq V_{CC}$ -0.2V $I_{I/O}$ = 0mA other pins at 0.2V or V_{CC} -0.2V			-	8	16	mA
	IsB	CE# = VIH or CE2 = VI Other pins at VIL or VIH			-	0.3	2	mA
Standby Power Supply Current		05"> V 00V	LLI		-	10	100	μΑ
	I _{SB1}	$CE# \ge Vcc-0.2V$ or $CE2 \le 0.2V$	SLI ^{*5}	25 ℃	-	4	6	μΑ
	1281	Other pins at 0.2V or Vcc-0.2V	JLI .	40 ℃	-	4	6	μΑ
			SLI		-	4	40	μΑ

- 1. VIH(max) = VCC + 3.0V for pulse width less than 10ns. 2. VIL(min) = VSS 3.0V for pulse width less than 10ns.
- 3. Over/Undershoot specifications are characterized, not 100% tested.

APRIL/2010 V1.b **ALLIANCE MEMORY** PAGE 3 of 11

- 4. Typical values are included for reference only and are $\ensuremath{\eta}\xspace$ or under the stead. Typical values are measured at $V_{CC}^{CC} = V_{CC}(TYP.)$ and $T^{A} = 25^{\circ}C$ 5. This parameter is measured at $V^{CC} = 3.0V$

CAPACITANCE (TA = 25° C, f = 1.0MHz)

PARAMETER	SYMBOL	MIN.	MAX	UNIT
Input Capacitance	Cin	-	6	pF
Input/Output Capacitance	CI/O	-	8	pF

Note: These parameters are guaranteed by device characterization, but not production tested.

AC TEST CONDITIONS

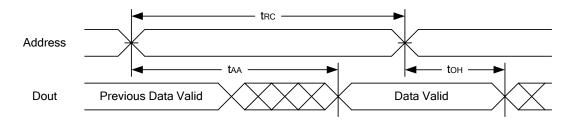
Input Pulse Levels	0.2V to Vcc - 0.2V
Input Rise and Fall Times	3ns
Input and Output Timing Reference Levels	1.5V
Output Load	$C_L = 30pF + 1TTL$, $I_{OH}/I_{OL} = -1mA/2mA$

AC ELECTRICAL CHARACTERISTICS

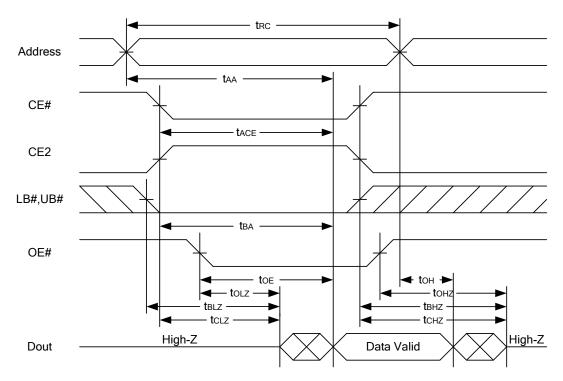
(1) READ CYCLE

PARAMETER	SYM.	AS6C	AS6C1616-55		
		MIN.	MAX.]	
Read Cycle Time	trc	55	-	ns	
Address Access Time	taa	-	55	ns	
Chip Enable Access Time	tace	-	55	ns	
Output Enable Access Time	toe	-	30	ns	
Chip Enable to Output in Low-Z	tcLz*	10	-	ns	
Output Enable to Output in Low-Z	tolz*	5	-	ns	
Chip Disable to Output in High-Z	tcHz*	-	20	ns	
Output Disable to Output in High-Z	tonz*	-	20	ns	
Output Hold from Address Change	tон	10	-	ns	
LB#, UB# Access Time	tва	-	55	ns	
LB#, UB# to High-Z Output	tBHZ*	-	25	ns	
LB#, UB# to Low-Z Output	t _{BLZ} *	10	-	ns	

(2) WRITE CYCLE

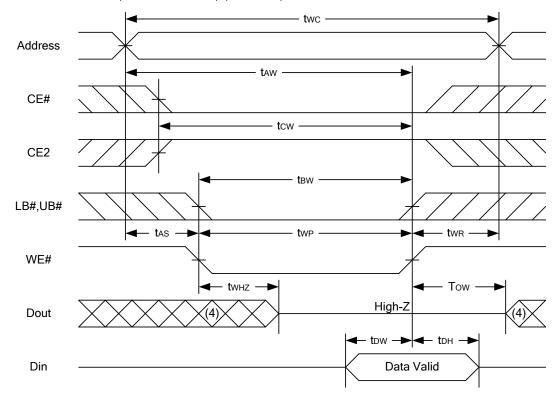

PARAMETER	SYM.	AS6C1616-55		UNIT
		MIN.	MAX.	
Write Cycle Time	twc	55	-	ns
Address Valid to End of Write	taw	50	-	ns
Chip Enable to End of Write	tcw	50	-	ns
Address Set-up Time	tas	0	-	ns
Write Pulse Width	twp	45	-	ns
Write Recovery Time	twr	0	-	ns
Data to Write Time Overlap	tow	25	-	ns
Data Hold from End of Write Time	tон	0	-	ns
Output Active from End of Write	tow*	5	-	ns
Write to Output in High-Z	twnz*	-	20	ns
LB#, UB# Valid to End of Write	t _{BW}	45	-	ns

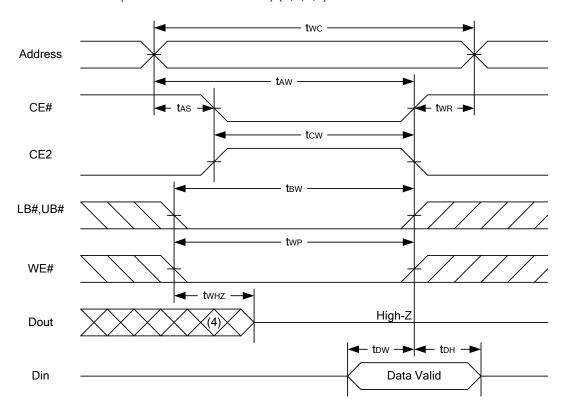
These parameters are guaranteed by device characterization, but not production tested.



TIMING WAVEFORMS

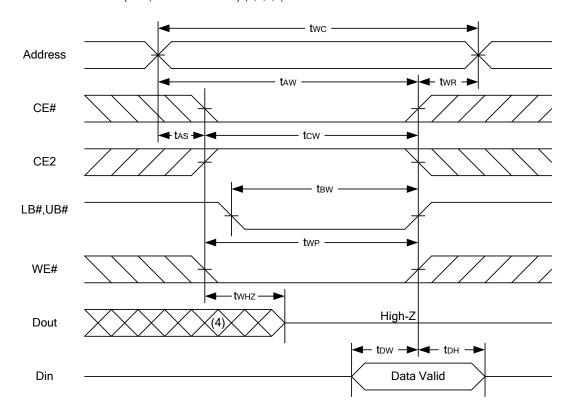
READ CYCLE 1 (Address Controlled) (1,2)


READ CYCLE 2 (CE# and CE2 and OE# Controlled) (1,3,4,5)


Notes:

- 1.WE#is high for read cycle.
- 2.Device is continuously selected OE# = low, CE# = low, CE2 = high, LB# or UB# = low.
- 3.Address must be valid prior to or coincident with CE# = low, CE2 = high, LB# or UB# = low transition; otherwise tAA is the limiting parameter.
- 4.tclz, tblz, tolz, tchz, tbhz and tohz are specified with CL = 5pF. Transition is measured $\pm 500mV$ from steady state.
- 5.At any given temperature and voltage condition, tcHz is less than tcLz , tBHz is less than tBLz, toHz is less than toLz.

WRITE CYCLE 1 (WE# Controlled) (1,2,3,5,6)

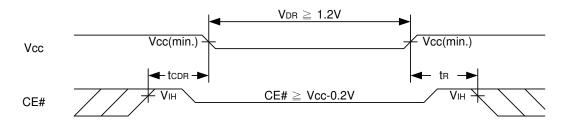


WRITE CYCLE 2 (CE# and CE2 Controlled) (1,2,5,6)

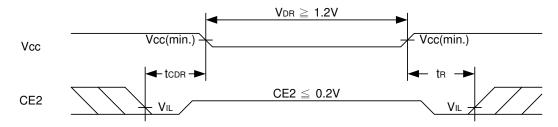
WRITE CYCLE 3 (LB#,UB# Controlled) (1,2,5,6)

Notes:

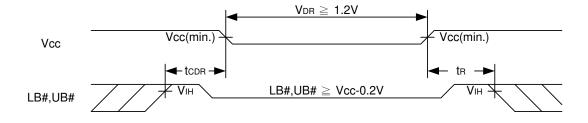
- 1.WE#,CE#, LB#, UB# must be high or CE2 must be low during all address transitions.
- 2.A write occurs during the overlap of a low CE#, high CE2, low WE#, LB# or UB# = low.
- 3.During a WE# controlled write cycle with OE# low, twp must be greater than twHz + tpw to allow the drivers to turn off and data to be placed on the bus.
- 4. During this period, I/O pins are in the output state, and input signals must not be applied.
- 5.If the CE#, LB#, UB# low transition and CE2 high transition occurs simultaneously with or after WE# low transition, the outputs remain in a high impedance state.
- 6.tow and twHz are specified with CL = 5pF. Transition is measured $\pm 500mV$ from steady state.


DATA RETENTION CHARACTERISTICS

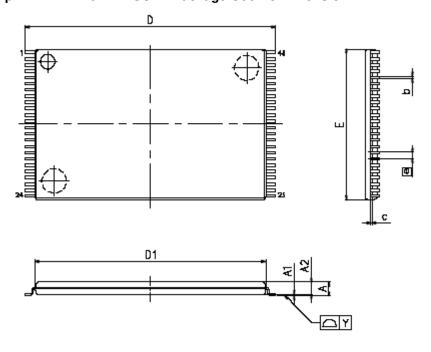
PARAMETER	SYMBOL	TEST CONDITION			MIN.	TYP.	MAX.	UNIT
Vcc for Data Retention	V_{DR}	CE# \ge V _{CC} - 0.2V or CE2 \le 0.2V	′		1.2	1	3.6	V
Data Retention Current		V _{CC} = 1.2V			1	4	80	μΑ
	I _{DR}	CE# ≥Vcc-0.2V or CE2≦0.2V		25 ℃	-	2.5	5	μΑ
			SLI	40 ℃	-	2.5	5	μΑ
			SLI		-	2.5	40	μΑ
Chip Disable to Data Retention Time	tcdr	See Data Retention Waveforms (below)			0	-	-	ns
Recovery Time	tr				trc∗	-	-	ns

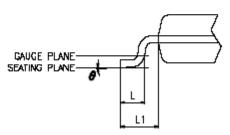

tRC* = Read Cycle Time

DATA RETENTION WAVEFORM


Low Vcc Data Retention Waveform (1) (CE# controlled)

Low Vcc Data Retention Waveform (2) (CE2 controlled)


Low Vcc Data Retention Waveform (3) (LB#, UB# controlled)



PACKAGE OUTLINE DIMENSION

48-pin 12mm x 20mm TSOP-I Package Outline Dimension

VARIATIONS (ALL DIMENSIONS SHOWN IN MM)

	•			
	SYMBOLS	MIN.	NOM.	MAX
	A	ı	ı	1.20
	A1	0.05	ı	0.15
	A2	0.95	1.00	1.05
	Ь	0.17	0.22	0.27
	c	0.10	-	0.21
Δ		19.80	20.00	20.20
Λ	□1	18.30	18.40	18.50
Δ	E	11.90	12.00	12.10
	₽	0).50 BASI	С
	L	0.50	0.60	0.70
Δ	L1	_	ი.80	_
Δ	Υ	_	_	0.10
Δ	θ	Ç	_	5*

NOTES:

- 1 JEDEC OUTLINE : MO-142 DD
- 2.PROFILE TOLERANCE ZONES FOR 01 AND E DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE MOLD PROTRUSION ON E IS 0.15 mm PER SIDE AND ON D1 IS 0.25 mm PER SIDE.
- 3.DIMENSION IS DOES NOT INCLUDE DAMBAR PROTRUSION ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08mm TOTAL IN EXCESS OF THE IS DIMENSION AT NAXIMUN MATERIAL CONDITION DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT.

ORDERING INFORMATION

Alliance	Organization	VCC Range	Package	Operating Temp	Speed ns
AS6C1616-55TIN	AS6C1616-55TIN 1024K x 16		48pin TSOP-I	Industrial ~ -40 F - 85 F	55

PART NUMBERING SYSTEM

AS6C	1616	-55	X	X	N
low power SRAM prefix	Device Number 16 =16M 16 =x16	Access Time	Package Option 48pin TSOP-I	Temperature Range I = Industrial (-40 to + 85 C)	N = Lead Free RoHS compliant part

APRIL/2010 V1.b ALLIANCE MEMORY PAGE 10 of 11

Alliance Memory, Inc 551 Taylor Way, Suite 1 San Carlos, CA 94070, USA Phone: 650-610-6800 Fax: 650-620-9211

www.alliancememory.com

Copyright © Alliance Memory All Rights Reserved

© Copyright 2010 Alliance Memory, Inc. All rights reserved. Our three-point logo, our name and Intelliwatt are trademarks or registered trademarks of Alliance. All other brand and product names may be the trademarks of their respective companies. Alliance reserves the right to make changes to this document and its products at any time without notice. Alliance assumes no responsibility for any errors that may appear in this document. The data contained herein represents Alliance's best data and/or estimates at the time of issuance. Alliance reserves the right to change or correct this data at anytime, without notice. If the product described herein is under development, significant changes to these specifications are possible. The information in this product data sheet is intended to be general descriptive information for potential customers and users, and is not intended to operate as, or provide any guarantee or warrantee to any user or customer. Alliance does not assume any responsibility or liability arising out of the application or use of any product described herein, and disclaims any express or implied warranties related to the sale and/or use of Alliance products including liability or warranties related to fitness for a particular purpose, merchantability, or infringement of any intellectual property rights, except as express agreed to in Alliance's Terms and Conditions of Sale (which are available from Alliance). All sales of Alliance products are made exclusively according to Alliance's Terms and Conditions of Sale. The purchase of products from Alliance does not convey a license under any patent rights, copyrights; mask works rights, trademarks, or any other intellectual property rights of Alliance or third parties. Alliance does not authorize its products for use as critical components in life-supporting systems where a malfunction or failure may reasonably be expected to result in significant injury to the user, and the inclusion of Alliance products in such life-supporting systems implies that th