

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

AS7C316096B 2048K X 8 BIT HIGH SPEED CMOS SRAM

REVISION HISTORY

<u>Revision</u>	<u>Description</u>	<u>Issue Date</u>
Rev. 1.0	Initial Issue	June.2014
Rev. 2.0	Typo error on page 1 - should be 44-pin 400 mil TSOP-II	Jan. 2017

AS7C316096B

FEATURES

Fast access time : 10ns
 Low power consumption:

 Operating current : 70mA (TYP.)
 Standby current : 4mA(TYP.)

■ Single 3.3V power supply

■ All inputs and outputs TTL compatible

Fully static operationTri-state output

Data retention voltage: 1.5V (MIN.)
 All parts are ROHS Compliant
 Package: 44-pin 400 mil TSOP-II

48-ball 6mm x 8mm TFBGA

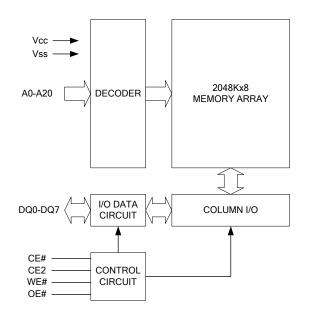
GENERAL DESCRIPTION

The AS7C316096B is a 16M-bit high speed CMOS static random access memory organized as 2048K words by 8 bits. It is fabricated using very high performance, high reliability CMOS technology. Its standby current is stable within the range of operating temperature.

The AS7C316096B operates from a single power supply of 3.3V and all inputs and outputs are fully TTL compatible

Table 1. Speed Grade Information

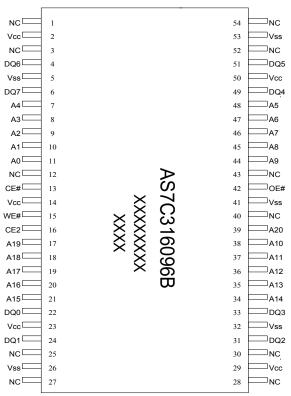
Product	\/ Pango	Spood	Power Dissipation		
Family	V _{CC} Range	Speed	Standby(I _{SB1} ,TYP.)	Operating(I _{CC} ,TYP.)	
AS7C316096B	2.7 ~ 3.6V	10ns	4mA	70mA	


Table 2. Ordering Information

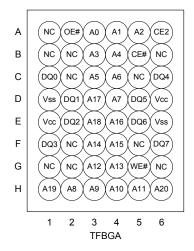
Product part No	Org Temperature		Package
AS7C316096B-10TIN	2048K x 8	Industrial -40°C to 85°C	44-pin 400mil TSOP-II
7.57 €510050В 101111	204010 70	maastrar 40 C to 05 C	144 piii 400iiii 1301 ii
AS7C316096B-10BIN	2048K x 8	Industrial -40°C to 85°C	48-ball 6mm x 8mm TFBGA

AS7C316096B 2048K X 8 BIT HIGH SPEED CMOS SRAM

FUNCTIONAL BLOCK DIAGRAM


PIN DESCRIPTION

SYMBOL	DESCRIPTION
A0 – A20	Address Inputs
DQ0 – DQ7	Data Inputs/Outputs
CE#, CE2	Chip Enable Inputs
WE#	Write Enable Input
OE#	Output Enable Input
Vcc	Power Supply
Vss	Ground
NC	No Connection



AS7C316096B 2048K X 8 BIT HIGH SPEED CMOS SRAM

PIN CONFIGURATION

TSOP II(Top View)

TFBGA

AS7C316096B

ABSOLUTE MAXIMUM RATINGS*

PARAMETER	SYMBOL	RATING	UNIT
Voltage on V _{CC} relative to V _{SS}	V_{T1}	-0.5 to 4.6	V
Voltage on any other pin relative to V _{SS}	V_{T2}	-0.5 to Vcc+0.5	V
Operating Temperature	T _A	-40 to 85(I grade)	$^{\circ}$
Storage Temperature	T _{STG}	-65 to 150	$^{\circ}\!\mathbb{C}$
Power Dissipation	P_{D}	1	W
DC Output Current	I _{OUT}	50	mA

^{*}Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to the absolute maximum rating conditions for extended period may affect device reliability.

TRUTH TABLE

MODE	CE#	CE2	OE#	WE#	I/O OPERATION	SUPPLY CURRENT
Standby	Н	Х	Х	Х	High-Z	I _{SB1}
Standby	Х	L	Х	Х	High-Z	I _{SB1}
Output Disable	L	Н	Н	Н	High-Z	I _{CC}
Read	L	Н	L	Н	Douт	I _{cc}
Write	L	Н	Х	L	Din	I _{cc}

Note: $H = V_{IH}$, $L = V_{IL}$, X = don't care.

DC ELECTRICAL CHARACTERISTICS

PARAMETER	SYM.	TEST CONDITION	MIN.	TYP. *4	MAX.	UNIT
Supply Voltage	V _{CC}		2.7	3.3	3.6	V
Input High Voltage	V _{IH} ^{*1}		2.2	-	Vcc+0.3	V
Input Low Voltage	$V_{\rm IL}^{2}$		- 0.3	-	0.8	V
Input Leakage Current	ILI	$V_{CC} \ge V_{IN} \ge V_{SS}$	- 1	-	1	μA
Output Leakage Current	I _{LO}	$V_{CC} \ge V_{OUT} \ge V_{SS}$, Output Disabled	- 1	-	1	μΑ
Output High Voltage	V _{OH}	$I_{OH} = -4mA$	2.4	-	-	V
Output Low Voltage	V _{OL}	I _{OL} = 8mA	-	-	0.4	V
Average Operating Power supply Current	I _{CC}	CE# \leq 0.2V and CE2 \geq V _{CC} -0.2V, other pins at 0.2V or V _{CC} -0.2V, -10 $I_{I/O}$ = 0mA; f=max.	-	70	120	mA
Standby Power Supply Current	I _{SB1}	CE# \geq V _{CC} - 0.2V; Other pins at 0.2V or V _{CC} -0.2V.	-	4	40	mA

Notes

- 1. $V_{IH(MAX)} = V_{CC} + 2.0V$ for pulse width less than 6ns.
- 2. $V_{\text{IL}(MIN)} = V_{\text{SS}} 2.0V$ for pulse width less than 6ns.
- 3. Over/Undershoot specifications are characterized on engineering evaluation stage, not for mass production test.
- 4. Typical values are included for reference only and are not guaranteed or tested. Typical valued are measured at V_{CC} = $V_{CC(TYP)}$ and T_A = 25°C

AS7C316096B 2048K X 8 BIT HIGH SPEED CMOS SRAM

CAPACITANCE (T_A = 25°C, f = 1.0MHz)

PARAMETER	SYMBOL	MIN.	MAX	UNIT
Input Capacitance	C _{IN}	-	8	pF
Input/Output Capacitance	C _{I/O}	-	10	pF

Note: These parameters are guaranteed by device characterization, but not production tested.

AC TEST CONDITIONS

speed	10ns
Input Pulse Levels	0.2V to Vcc-0.2V
Input Rise and Fall Times	3ns
Input and Output Timing Reference Levels	V _{CC} /2
Output Load	$C_L = 30pF + 1TTL$, $I_{OH}/I_{OL} = -8mA/4mA$

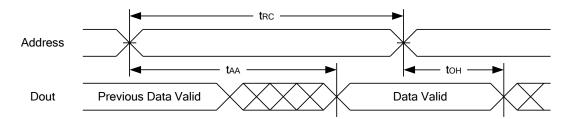
AC ELECTRICAL CHARACTERISTICS

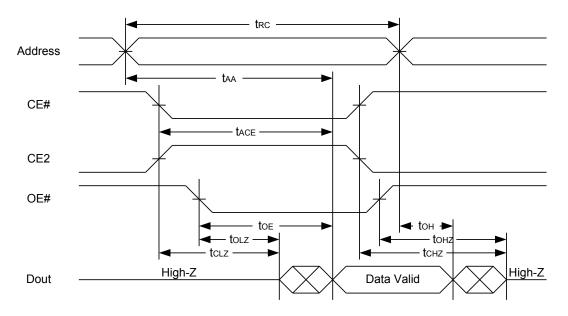
(1) READ CYCLE

PARAMETER	SYM.	AS7C31	UNIT	
		MIN.	MAX.	
Read Cycle Time	t _{RC}	10	-	ns
Address Access Time	t _{AA}	-	10	ns
Chip Enable Access Time	t _{ACE}	-	10	ns
Output Enable Access Time	t _{OE}	-	4.5	ns
Chip Enable to Output in Low-Z	t _{CLZ} *	2	-	ns
Output Enable to Output in Low-Z	t _{OLZ} *	0	-	ns
Chip Disable to Output in High-Z	t _{CHZ} *	-	4	ns
Output Disable to Output in High-Z	t _{OHZ} *	-	4	ns
Output Hold from Address Change	t _{OH}	2	-	ns

(2) WRITE CYCLE

PARAMETER	SYM.	AS7C316	UNIT	
	•	MIN.	MAX.	
Write Cycle Time	t _{WC}	10	-	ns
Address Valid to End of Write	t _{AW}	8	-	ns
Chip Enable to End of Write	t _{CW}	8	-	ns
Address Set-up Time	t _{AS}	0	-	ns
Write Pulse Width	t _{WP}	8	-	ns
Write Recovery Time	t _{WR}	0	-	ns
Data to Write Time Overlap	t _{DW}	6	-	ns
Data Hold from End of Write Time	t _{DH}	0	-	ns
Output Active from End of Write	t _{OW} *	2	-	ns
Write to Output in High-Z	t _{WHZ} *	-	4	ns

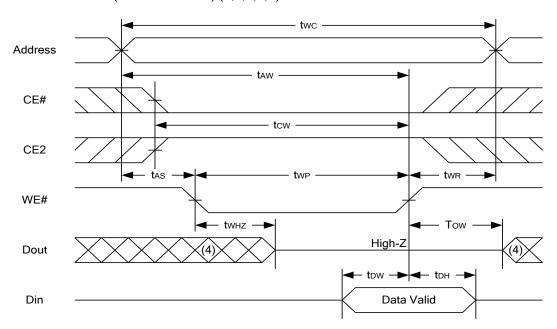

^{*}These parameters are guaranteed by device characterization, but not production tested.


AS7C316096B

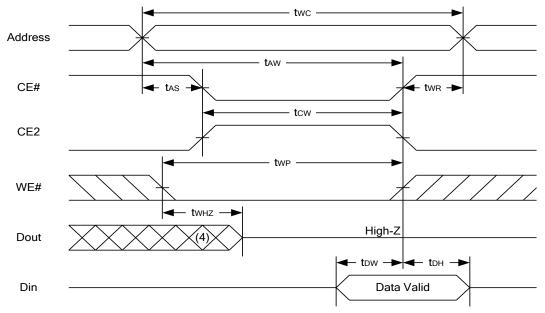
TIMING WAVEFORMS

READ CYCLE 1 (Address Controlled) (1,2)

READ CYCLE 2 (CE# and CE2 and OE# Controlled) (1,3,4,5)


Notes:

- 1.WE# is high for read cycle.
- 2.Device is continuously selected OE# = low, CE# = low., CE2 = high.
- 3.Address must be valid prior to or coincident with CE# = low, CE2 = high; otherwise t_{AA} is the limiting parameter.
- $4.t_{CLZ}$, t_{OLZ} , t_{CHZ} and t_{OHZ} are specified with C_L = 5pF. Transition is measured ± 500 mV from steady state.
- 5.At any given temperature and voltage condition, t_{CHZ} is less than t_{CLZ} , t_{OHZ} is less than t_{OLZ} .



AS7C316096B

WRITE CYCLE 1 (WE# Controlled) (1,2,3,5,6)

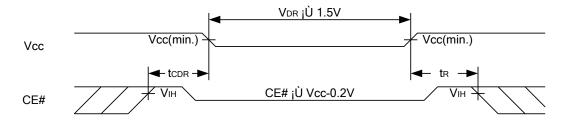
WRITE CYCLE 2 (CE# and CE2 Controlled) (1,2,5,6)

Notes

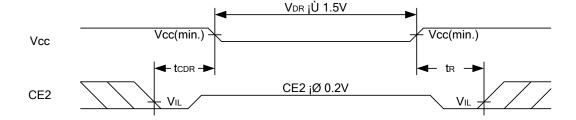
- 1.WE#, CE# must be high or CE2 must be low during all address transitions.
- 2.A write occurs during the overlap of a low CE#, high CE2, low WE#.
- 3.During a WE#controlled write cycle with OE# low, t_{WP} must be greater than t_{WHZ} + t_{DW} to allow the drivers to turn off and data to be placed on the bus.
- 4. During this period, I/O pins are in the output state, and input signals must not be applied.
- 5.If the CE#low transition and CE2 high transition occurs simultaneously with or after WE# low transition, the outputs remain in a high impedance state.
- $6.t_{\text{OW}}$ and t_{WHZ} are specified with C_{L} = 5pF. Transition is measured $\pm 500 \text{mV}$ from steady state.

AS7C316096B

2048K X 8 BIT HIGH SPEED CMOS SRAM


DATA RETENTION CHARACTERISTICS

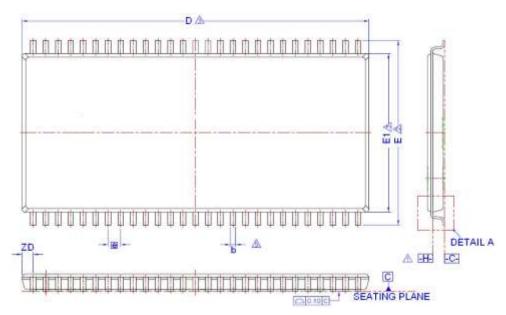
PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Vcc for Data Retention	V_{DR}	CE# \geq V _{CC} - 0.2V or CE2 \leq 0.2V	1.5	-	3.6	V
Data Retention Current	I _{DR}	V_{CC} = 1.5V CE# \geq V_{CC} - 0.2V or CE2 \leq 0.2V Other pins at 0.2V or V_{CC} -0.2V	-	4	40	mA
Chip Disable to Data Retention Time	Ionn	See Data Retention Waveforms (below)	0	-	-	ns
Recovery Time	t _R		t _{RC*}	-	-	ns

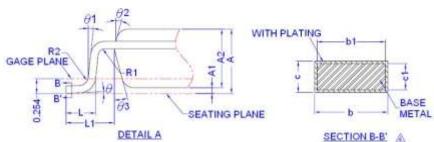

t_{RC*} = Read Cycle Time

DATA RETENTION WAVEFORM

Low Vcc Data Retention Waveform (1) (CE# controlled)

Low Vcc Data Retention Waveform (2) (CE2 controlled)




AS7C316096B

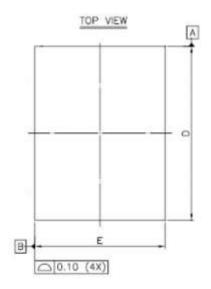
2048K X 8 BIT HIGH SPEED CMOS SRAM

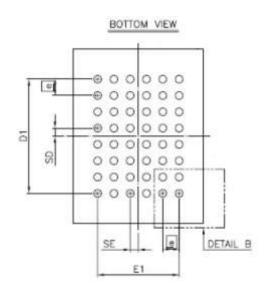
PACKAGE OUTLINE DIMENSION

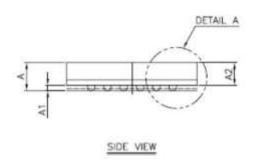
54-pin 400 mil TSOP-II Package Outline Dimension

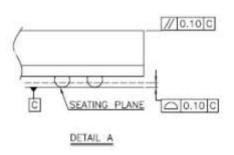
SYM,	DIMENSION (MM)			DIMENSION (INCH)			
	MIN	NOM	MAX	MIN	NOM	MAX	
A	-	-	1.20	-	-	0.047	
A1	0.05	0.10	0.15	0.002	0.004	0.006	
A2	0.95	1.00	1.05	0.037	0.039	0.041	
b	0.30		0.45	0.012	:-	0.018	
DΤ	0.30	0.35	0.40	0.012	0.014	0.016	
E.	0.12	-	0.21	0.005	-	0.008	
ct	0.10	0.127	0.16	0.004	0.005	0.006	
0	22.22 BSC			0.875 BSC			
ZD	0.71 REF			0.028 REF			
E	11.76 BSC			0.463 BSC			
Et.	10.16 BSC			0.400 BSC			
L	0.40	0.50	0.60	0.016	0.020	0.024	
Lf	0.80 REF			0.031 REF			
(E)	0.80 BSC			0.031 BSC			
R1	0.12	122		0.005	12	-	
R2	0.12	-	0.25	0.005	9	0.010	
0	O.	=	10.	0		B.	
91	0"	-	-	U	-		
82	10"	15'	20	10"	15*	20"	
63	10"	15"	20"	10"	15"	20"	

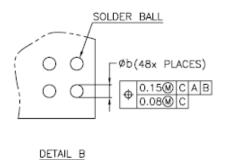
NOTE


- 1, DATUM PLANE H- COINCIDENT WITH BOTTOM OF LEAD, WHERE LEAD EXITS BODY.
- 2. TO BE DETERMINED AT SEATING PLANE -C-
- 3. DIMENSION D AND E1 ARE DETERMINED AT DATUM EHE ...
 DIMENSION D DOES NOT INCLUDE MOLD PROTRUSIONS OR GATE BURRS. MOLD PROTRUSIONS AND GATE BURRS SHALL NOT EXCEED 0.15mm PER SIDE.
 DIMENSION E1 DOES NOT INCLUDE INTERLEAD MOLD PROTRUSIONS. INTERLEAD MOLD PROTRUSIONS SHALL NOT EXCEED 0.25mm PER SIDE.
- THESE DIMENSIONS APPLY TO THE FLAY SECTION OF THE LEAD BETWEEN 0.10mm AND 0.25mm FROM THE LEAD TIP.
- 5. DIMENSION IN DOES NOT INCLUDE DAMBAR PROTRUSION/INTRUSION.
- 6. CONTROLLING DIMENSION: MILLIMETER.
- 7. REFER TO JEDEC STD MS-024, FA




AS7C316096B


2048K X 8 BIT HIGH SPEED CMOS SRAM


48-ball 6mm × 8mm TFBGA Package Outline Dimension

SYM.	DIMENSION (mm)			DIMENSION (inch)			
	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	
Α		_	1.40	_	_	0.055	
A1	0.20	0.25	0.30	0.008	0.010	0.012	
A2	_	_	1.05	_	_	0.041	
b	0.30	0.35	0.40	0.012	0.014	0.016	
D	7.95	8.00	8.05	0.313	0.315	0.317	
D1	5.25 BSC			0.207 BSC			
Ε	5.95	6.00	6.05	0.234	0.236	0.238	
E1	3.75 BSC			0.148 BSC			
SE	0.375 TYP			0.015 TYP			
SD	0.375 TYP			0.015 TYP			
е	0	.75 BS(0.030 BSC			

NOTE:

- 1. CONTROLLING DIMENSION: MILLIMETER.
- 2. REFERENCE DOCUMENT : JEDEC MO-207.

AS7C316096B 2048K X 8 BIT HIGH SPEED CMOS SRAM

Preliminary 1.0

Alliance Memory Inc. reserves the rights to change the specifications and products without notice.

Alliance Memory, Inc., 551 Taylor Way, Suite #1, San Carlos, CA 94070, USA Tel: +1 650 610 6800 Fax: +1 650 620 9211