imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

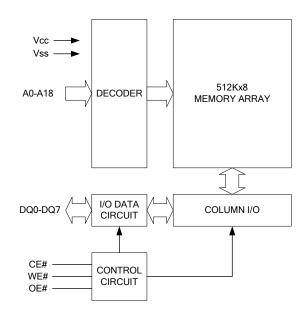
Revision History AS7C34096B 512K X 8 BIT HIGH SPEED CMOS SRAM

Revision	Details	Date
Rev 1.0	Initial Issue	Aug. 2016
Rev 1.1	Added 6mm x 8mm TFBGA Package	Sep. 2017

FEATURES

- Fast access time : 10ns
- Low power consumption: Operating current: 40mA(TYP.)
 Standby current: 2mA(TYP.)
- Single 3.3V power supply
- All inputs and outputs TTL compatible
- Fully static operation
- Tri-state output
- Data retention voltage : 1.5V (MIN.)
- Package : 44-pin 400 mil TSOP-II 36-ball 6mm x 8mm TFBGA

GENERAL DESCRIPTION

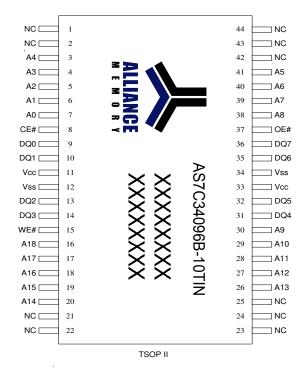

The AS7C34096B is a 4,194,304-bit high speed CMOS static random access memory organized as 524,288 words by 8 bits. It is fabricated using very high performance, high reliability CMOS technology. Its standby current is stable within the range of operating temperature.

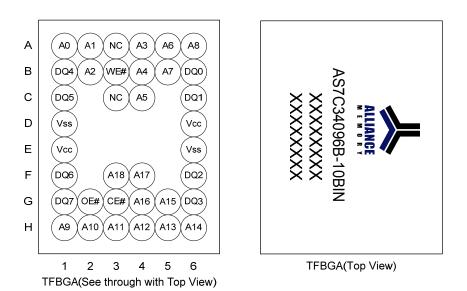
The AS7C34096B operates from a single power supply of 3.3V and all inputs and outputs are fully TTL compatible

Table 1. Ordering Information

Part Number	Speed	Temperature	Vcc Range	Package
AS7C34096B-10TIN	10ns	Industrial -40°C to +85°C	2.7 ~ 3.6V	44pin TSOPII
AS7C34096B-10BIN	10ns	Industrial -40°C to +85°C	2.7 ~ 3.6V	36ball FBGA

FUNCTIONAL BLOCK DIAGRAM


PIN DESCRIPTION


SYMBOL	DESCRIPTION
A0 - A18	Address Inputs
DQ0 – D7	Data Inputs/Outputs
CE#	Chip Enable Inputs
WE#	Write Enable Input
OE#	Output Enable Input
Vcc	Power Supply
Vss	Ground
NC	No Connection

AS7C34096B-10TIN AS7C34096B-10BIN

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS*

PARAMETER	SYMBOL	RATING	UNIT
Voltage on V_{CC} relative to V_{SS}	V _{T1}	-0.5 to 4.6	V
Voltage on any other pin relative to V_{SS}	V _{T2}	-0.5 to Vcc+0.5	V
Operating Temperature	TA	-40 to 85	°C
Storage Temperature	Tstg	-65 to 150	°C
Power Dissipation	PD	1	W
DC Output Current	Іоит	50	mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to the absolute maximum rating conditions for extended period may affect device reliability.

TRUTH TABLE

MODE	CE#	OE#	WE#	I/O OPERATION	SUPPLY CURRENT
Standby	Н	Х	Х	High-Z	Isb,Isb1
Output Disable	L	Н	Н	High-Z	Icc,Icc1
Read	L	L	Н	Dout	Icc,Icc1
Write	L	Х	L	DIN	lcc,lcc1

Note: $H = V_{IH}$, $L = V_{IL}$, X = Don't care.

DC ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP. *4	MAX.	UNIT
Supply Voltage	Vcc		2.7	3.3	3.6	V
Input High Voltage	VIH ^{*1}		2.2	-	Vcc+0.3	V
Input Low Voltage	V1L*2		- 0.3	-	0.8	V
Input Leakage Current	L	$V_CC \geqq V_IN \geqq V_SS$	- 1	-	1	μA
Output Leakage Current	Ilo	$V_{CC} \ge V_{OUT} \ge V_{SS},$ Output Disabled	- 1	-	1	μA
Output High Voltage	Vон	I _{ОН} = -4mA	2.4	-	-	V
Output Low Voltage	Vol	I _{OL} = 8mA	-	-	0.4	V
Average Operating	lcc	Cycle time = Min. CE# = V _{IL} , I _{I/O} = 0mA, Others at V _{IL} or V _{IH}	-	50	70	mA
Power Supply Current	Icc1	$\begin{array}{ll} CE\# & \leq 0.2, \\ Others at 0.2V \text{ or } Vcc- 0.2V \\ I_{I^{O}} = 0mA; f=max \end{array}$	-	40	55	mA
Standby Power	I _{SB}	CE# =V _{IH} , Others at V _{IL} or V _{IH}	-	-	30	mA
Supply Current	I _{SB1}	$\begin{array}{ll} CE\# \ \geqq V_{CC} \text{ - } 0.2V, \\ Others at 0.2V \text{ or } V_{CC} \text{ - } 0.2V \end{array}$	-	2	10	mA

Notes:

1. $V_{IH(max)}$ = V_{CC} + 2.0V for pulse width less than 6ns.

2. $V_{IL(min)} = V_{SS} - 2.0V$ for pulse width less than 6ns.

3. Over/Undershoot specifications are characterized on engineering evaluation stage, not for mass production test.

4. Typical values are included for reference only and are not guaranteed or tested.

Typical valued are measured at Vcc = Vcc(TYP.) and T_A = 25 $^\circ\!\mathrm{C}$

CAPACITANCE (T_A = 25℃, f = 1.0MHz)

PARAMETER	SYMBOL	MIN.	MAX	UNIT
Input Capacitance	CIN	-	8	pF
Input/Output Capacitance	Cı/o	-	10	pF

Note : These parameters are guaranteed by device characterization, but not production tested.

AC TEST CONDITIONS

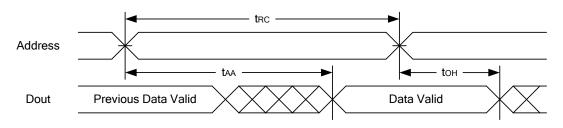
Speed	10ns
Input Pulse Levels	0.2V to Vcc - 0.2V
Input Rise and Fall Times	3ns
Input and Output Timing Reference Levels	1.5V
Output Load	C∟ = 30pF + 1TTL, Iон/Iо∟ = -4mA/8mA

AC ELECTRICAL CHARACTERISTICS

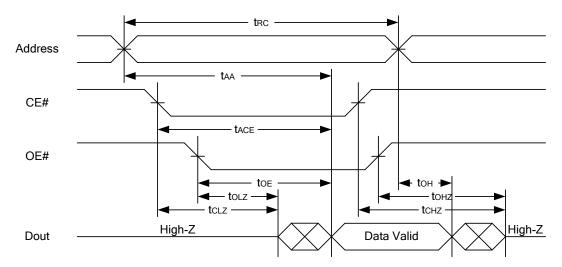
(1) READ CYCLE

PARAMETER	SYM.	AS7C34	096B-10	UNIT
FARAMETER	511.	MIN.	MAX.	
Read Cycle Time	trc	10	-	ns
Address Access Time	taa	-	10	ns
Chip Enable Access Time	t ace	-	10	ns
Output Enable Access Time	toe	-	4.5	ns
	tc∟z*	2	-	ns
Output Enable to Output in Low-Z	tolz*	0	-	ns
	tснz*	-	4	ns
Output Disable to Output in High-Z		-	4	ns
Output Hold from Address Change	tон	2	-	ns

(2) WRITE CYCLE


PARAMETER	SYM.	AS7C34	096B-10	UNIT
	3 T W.	MIN.	MAX.	UNIT
Write Cycle Time	twc	10	-	ns
Address Valid to End of Write	taw	8	-	ns
Chip Enable to End of Write	tcw	8	-	ns
Address Set-up Time	tas	0	-	ns
Write Pulse Width	twp	8	-	ns
Write Recovery Time	twr	0	-	ns
Data to Write Time Overlap	tow	6	-	ns
Data Hold from End of Write Time	tон	0	-	ns
Output Active from End of Write	tow*	2	-	ns
Write to Output in High-Z	twнz*	-	4	ns

*These parameters are guaranteed by device characterization, but not production tested.



TIMING WAVEFORMS

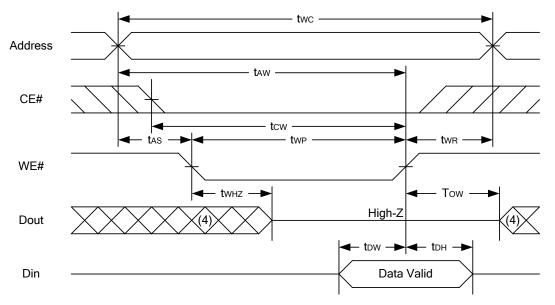
READ CYCLE 1 (Address Controlled) (1,2)

READ CYCLE 2 (CE# and OE# Controlled) (1,3,4,5)

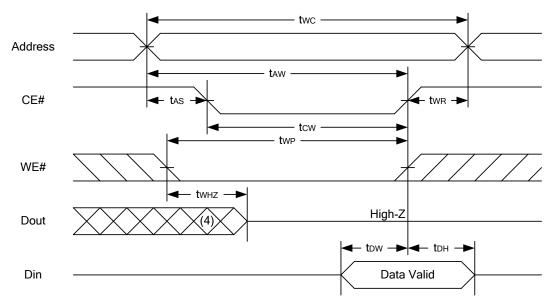
Notes :

1.WE# is high for read cycle.

2.Device is continuously selected OE# = low, CE# = low.


3.Address must be valid prior to or coincident with CE# = low,; otherwise tAA is the limiting parameter.

 $4.t_{CLZ}$, t_{OLZ} , t_{CHZ} and t_{OHZ} are specified with C_L = 5pF. Transition is measured ±500mV from steady state.


5.At any given temperature and voltage condition, t_{CHZ} is less than t_{CLZ} , t_{OHZ} is less than t_{OLZ} .

WRITE CYCLE 1 (WE# Controlled) (1,2,4,5)

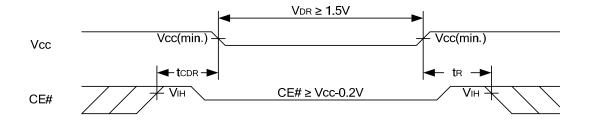
WRITE CYCLE 2 (CE# Controlled) (1,4,5)

Notes :

1.A write occurs during the overlap of a low CE#, low WE#.

2.During a WE# controlled write cycle with OE# low, twp must be greater than twHz + tow to allow the drivers to turn off and data to be placed on the bus.

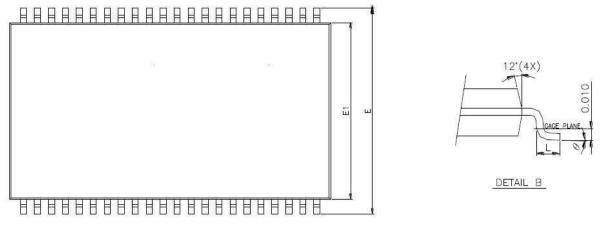
- 3. During this period, I/O pins are in the output state, and input signals must not be applied.
- 4.If the CE# low transition occurs simultaneously with or after WE# low transition, the outputs remain in a high impedance state.
- 5 tow and twHz are specified with $C_L = 5pF$. Transition is measured $\pm 500mV$ from steady state.

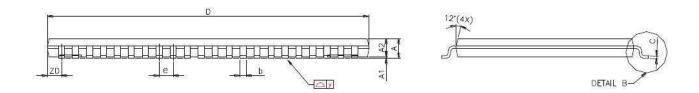


DATA RETENTION CHARACTERISTICS

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Vcc for Data Retention	Vdr	$CE\# \ge V_{CC} - 0.2V$	1.5	-	3.6	V
Data Retention Current	I _{DR}	$\begin{array}{l} V_{cc} = 1.5V \\ CE\# \geqq V_{cc} - 0.2V \\ Others at 0.2V \mbox{ or } V_{cc} - 0.2V \end{array}$	-	2	10	mA
Chip Disable to Data Retention Time	tcdr	See Data Retention Waveforms (below)	0	-	-	ns
Recovery Time	t _R		t _{RC*}	-	-	ns

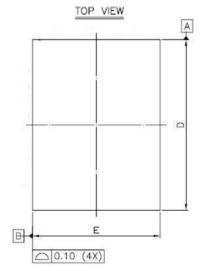
t_{RC*} = Read Cycle Time

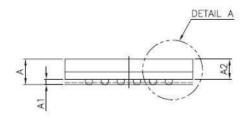

DATA RETENTION WAVEFORM



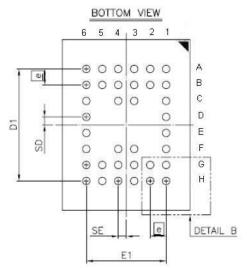
PACKAGE OUTLINE DIMENSION

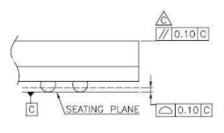
44-pin 400mil TSOP- II Package Outline Dimension





SYMBOLS	DIMENS	ONS IN MILL	METERS	DIM	ENSIONS IN	MILS
STNIDULS	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.
A	-	-	1.20	-	-	47.2
A1	0.05	0.10	0.15	2.0	3.9	5.9
A2	0.95	1.00	1.05	37.4	39.4	41.3
b	0.30	-	0.45	11.8	-	17.7
С	0.12	-	0.21	4.7	-	8.3
D	18.212	18.415	18.618	717	725	733
E	11.506	11.760	12.014	453	463	473
E1	9.957	10.160	10.363	392	400	408
е	-	0.800	-	-	31.5	-
L	0.40	0.50	0.60	15.7	19.7	23.6
ZD	-	0.805	-	-	31.7	-
У	-	-	0.076	-	-	3
θ	0°	3°	6°	0°	3°	6°




36 ball 6mm × 8mm TFBGA Package Outline Dimension

SIDE VIEW

DETAIL A

	SYM.	DIMENSION (mm)			DIMENSION (inch)			
		MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	
	А	—	—	1.20	—	—	0.047	
	A1	0.20	0.25	0.30	0.008	0.010	0.012	
	A2	—	—	0.94	—	—	0.037	
	b	0.30	0.35	0.40	0.012	0.014	0.016	
A	D	7.95	8.00	8.05	0.313	0.315	0.317	
	D1	5.25 BSC			0.207 BSC			
A	Е	5.95	6.00	6.05	0.234	0.236	0.238	
	E1	3	.75 BSC)	0.148 BSC			
	SE	0	.375 TY	Ρ	0.015 TYP			
	SD	0	.375 TY	Έ	0.015 TYP			
	e	0.75 BSC			0.030 BSC			

NOTE:

1. CONTROLLING DIMENSION : MILLIMETER.

2. REFERENCE DOCUMENT : JEDEC MO-207.

- 1		

PART NUMBERING SYSTEM

AS7C	34096B	10	T/B	I	N
SRAM	34096=512k x 8 B=B die	10=10ns	T = TSOPII B=TFBGA	l=Industrial (-40° C~+85° C)	Indicates Pb and Halogen Free

Alliance Memory, Inc. 511 Taylor Way, San Carlos, CA 94070 Tel: 650-610-6800 Fax: 650-620-9211 www.alliancememory.com

Copyright © Alliance Memory All Rights Reserved

© Copyright 2007 Alliance Memory, Inc. All rights reserved. Our three-point logo, our name and Intelliwatt are trademarks or registered trademarks of Alliance. All other brand and product names may be the trademarks of their respective companies. Alliance reserves the right to make changes to this document and its products at any time without notice. Alliance assumes no responsibility for any errors that may appear in this document. The data contained herein represents Alliance's best data and/or estimates at the time of issuance. Alliance reserves the right to change or correct this data at any time, without notice. If the product described herein is under development, significant changes to these specifications are possible. The information in this product data sheet is intended to be general descriptive information for potential customers and users, and is not intended to operate as, or provide, any guarantee or warrantee to any user or customer. Alliance does not assume any responsibility or liability arising out of the application or use of any product described herein, and disclaims any express or implied warranties related to the sale and/or use of Alliance products including liability or warranties related to fitness for a particular purpose, merchantability, or infringement of any intellectual property rights, except as express agreed to in Alliance's Terms and Conditions of Sale (which are available from Alliance). All sales of Alliance products are made exclusively according to Alliance's Terms and Conditions of Sale. The purchase of products from Alliance does not convey a license under any patent rights, copyrights; mask works rights, trademarks, or any other intellectual property rights of Alliance or third parties. Alliance does not authorize its products for use as critical components in life-supporting systems where a malfunction or failure may reasonably be expected to result in significant injury to the user, and the inclusion of Alliance products in such life-supporting systems implies that the manufacturer assumes all risk of such use and agrees to indemnify Alliance against all claims arising from such use.